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This version of spatial has been deprecated. For the current version of Spatial, please go to https://github.cmo/
stanford-ppl/spatial.

Documentation can be found on the website, spatial-lang.org
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CHAPTER 1

Spatial

For a brief introduction to Spatial and its purpose, see this presentation.

For a brief rundown of the language and its constructs, see these slides and the in-depth tutorials on this website.

Get Started API Documentation Source

Spatial is a domain-specific language for describing hardware accelerators for use on FPGAs and other supported
spatial architectures. The language is intended to be both higher level than hardware description languages (HDLs)
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like Verilog, VHDL, and Chisel, while also being easier to use than Altera’s OpenCL or high level synthesis (HLS)
languages like Xilinx’s Vivado.

Language features of Spatial include:

• Tunable, hardware specific templates

• User specified and implicitly created design parameters

• Design runtime and area analysis

• Automatic parameter tuning

• Automatic memory banking and buffering

To run Spatial on the new Amazon EC2 FPGA instances, see the AWS Tutorial.

1.1 API

The Spatial API is divided into three components: Acceleratable data structures and syntax can be used in the accel-
eration scope, while Host operations can only be used within the host code. Operations which are often used for either
within the accelerator definition or in the host code are grouped under the Common category.

Documentation for running the Spatial compiler is provided under Compiler.

1.1.1 Common

This section lists operations and types which are available for use both on the CPU and in hardware Accel scopes.

Data Structures

This subsection lists data structures which are available for use both on the CPU and in hardware Accel scopes.

Range

Range represents a sequence of 32b integer values from a given start (inclusive) to end (exclusive) with a non-zero
step size. Range also has an optional parallelization factor, which is used to determine physical unrolling in hardware.

In Accel scopes, Range instances can be implicitly converted to Counter.

Ranges can be created using two different syntax flavors. When unspecified, the default value for start is 0, and the
default value for step and par are both 1.

Form 1:

val range1 = max by step // start of 0, step by 1, parallelization of 1
val range2 = start until max // start of 0, step by 1, parallelization of 1
val range3 = start until max by step par p

Form 2:

val range4 = start :: end // Step of 1, parallelization of 1
val range5 = start :: step :: end par p

1.1. API 3
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Form 1 is typically used for specifying the domain of a loop, while Form 2 is used for Matlab-like syntax when
selecting a range of elements from a memory.

Ranges can also be used to create Scala-like for loops on the CPU::

for (i <- 0 until max by 2) {
..

}

This loop will run for all even integers from [0, max). Note that this syntax is only usable on the CPU or in simulation.

Infix methods

class Range
def length: Index

Returns the length of this Range.

def by(step: Index): Range
Creates a Range with this Range’s start and end but with the given step size.

def par(p: Index): Range
Creates a Range with this Range’s start, end, and stride, but with the given par parallelization factor.

def ::(start2: Index): Range
Creates a Range with this Range’s end, with the previous start as the step size, and the given start.
Note that this operator is right-associative.

def foreach(func: Index => Unit): Unit
Iterates over all integers in this range, calling func on each.

NOTE: This method is unsynthesizable, and can be used only on the CPU or in simulation.

Implicit methods

def rangeToCounter(range: Range): Counter
Implicitly creates a hardware Counter from this Range.

Structs

Custom structs can be created in Spatial using the @struct macro.

For example:

@struct MyData(x: Int, y: Double)

creates a struct which contains an Int and a Double. An instance of this struct can be created using:
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val data = MyData(32, 45.0f)

Note that this instance is immutable - its fields cannot be updated. Mutable custom struct instances are currently not
supported, but may be added in the future.

The fields of a custom struct are accessed using:

data.x

data.y

Defining a custom struct also implicitly adds evidence of the Bits and Arith type classes. This allows syntax like:

val rand2 = random[MyData]

val rand1 = random[MyData](MyData(32, 2.0f))

val a = rand2 + rand1
val b = rand2 - rand1

Tuple2

Tuple2[A,B] is a simple data structure used to hold a pair of staged values.

Note that this name shadows the unstaged Scala type. For the unstaged type, use the full name scala.Tuple2[A,B]

Infix methods
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class Tuple2[A,B]
def _1: A

Returns the first field in this Tuple2.

def _2: B
Returns the second field in this Tuple2.

def toString: String
Returns a printable String from this value.

NOTE: This method is unsynthesizable and can only be used on the CPU or in simulation.

def ———-

def **Related methods**

def @table-start

def NoHeading

def pack[A:Type,B:Type](t: (A, B)): MTuple2[A,B]
Returns a staged Tuple2 from the given unstaged Tuple2.

def pack[A:Type,B:Type](a: A, b: B): MTuple2[A,B]
Returns a staged Tuple2 from the given pair of values. Shorthand for **pack((a,b))**.

def unpack[A:Type,B:Type](t: MTuple2[A,B]): (A,B)
Returns an unstaged scala.Tuple2 from this staged Tuple2. Shorthand for **(x._1, x._2)**.

Vector

Vector defines a fixed size collection of scalar values. It is distinct from Array in that the size must always be statically
determinable. This allows Vector to always be allocated as a bus of wires when implemented in hardware.

Vector is most commonly used for managing parallel accesses to local memories in hardware and for bit-twiddling
operations.

To allow static type checking and creation of the Bits type class, the Vector type is split into subtypes based on the
number of elements it contains. For example, a Vector3[Int] is composed of 3, 32-bit Int values, while a Vector32[Bit]
is a single bus of 32 Bit values. Spatial currently defines Vector types from Vector1 up to Vector128.

To work around limitations with Scala’s type system Spatial also includes a VectorN type for when the vector width
cannot be type-encoded. This type generally needs to be annotated with the number of bits the user intended (e.g.
vector.as32b) before it can be written to memories.

Static methods
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object Vector
def LittleEndian[T:Type:Bits](elem: T*): VectorX[T]

Creates a VectorX from the given X elements, where X is between 1 and 128.
The first element supplied is the most significant (Vector index of X - 1).
The last element supplied is the least significant (Vector index of 0).

Note that this method is actually overloaded 128 times based on the number of supplied arguments.

def BigEndian[T:Type:Bits](elem: T*): VectorX[T]
Creates a VectorX from the given X elements, where X is between 1 and 128.
The first element supplied is the least significant (Vector index of 0).
The last element supplied is the most significant (Vector index of X - 1).

Note that this method is actually overloaded 128 times based on the number of supplied arguments.

def ZeroLast[T:Type:Bits](elem: T*): VectorX[T]
A mnemonic for LittleEndian (with reference to the zeroth element being specified last in order).

def ZeroFirst[T:Type:Bits](elem: T*): VectorX[T]
A mnemonic for BigEndian (with reference to the zeroth element being specified first in order).

Spatial also includes an alternate Vectorize object which takes a true arbitrary number of elements in all of its func-
tions. As a result, these methods return VectorNs.

object Vectorize
def LittleEndian[T:Type:Bits](elem: T*): VectorN[T]

Creates a VectorN from the given elements.
The first element supplied is the most significant (Vector index of N - 1).
The last element supplied is the least significant (Vector index of 0).

def BigEndian[T:Type:Bits](elem: T*): VectorN[T]
Creates a VectorN from the given elements.
The first element supplied is the least significant (Vector index of 0).
The last element supplied is the most significant (Vector index of N - 1).

def ZeroLast[T:Type:Bits](elem: T*): VectorN[T]
A mnemonic for LittleEndian (with reference to the zeroth element being specified last in order).

def ZeroFirst[T:Type:Bits](elem: T*): VectorN[T]
A mnemonic for BigEndian (with reference to the zeroth element being specified first in order).

Infix methods
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class Vector[T]
def apply(i: Int): T

Returns the i’th element of this Vector.
Element 0 is always the LSB.

def apply(range: Range)(implicit mT: Type[T], bT: Bits[T]): VectorN[T]
Returns a slice of the elements in this Vector as a VectorN.
The range must be statically determinable with a stride of 1.
The range is inclusive for both the start and end.
The range can be big endian (e.g. 3::0) or little endian (e.g. 0::3).
In both cases, element 0 is always the least significant element.

For example, x(3::0) returns a Vector of the 4 least significant elements of x.

def takeX(offset: scala.Int): VectorX[T]
Returns a slice of N elements of this Vector starting at the given offset from the
least significant element.
To satisfy Scala’s static type analysis, each width has a separate method.

For example, x.take3(1) returns the 3 least significant elements of x after the
least significant as a Vector3[T].

def !=(that: Vector[T]): MBoolean
Returns true if this Vector and that differ by at least one element, false otherwise.

def ==(that: Vector[T]): MBoolean
Returns true if this Vector and that contain the same elements, false otherwise.

class VectorX[T] extends Vector[T]

class VectorN[T]
def asVectorX: VectorX[T]

Casts this VectorN as a VectorX.
Values of X from 1 to 128 are currently supported.

If the VectorX type has fewer elements than this value’s type, the most significant elements will be dropped.
If the VectorX type has more elements than this value’s type, the resulting elements will be zeros.

def asXb: VectorX[Bit]
Returns a view of this VectorN’s bits as a X-bit Vector.
To satisfy Scala’s static analysis, each bit-width has a separate method.
Conversions between 1 and 128 bits are currently supported.

If X is smaller than this VectorN’s total bits, the MSBs will be dropped.
If X is larger than this VectorN’s total bits, the resulting MSBs will be zeros.
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Primitive Types

Boolean

Boolean represents a staged single boolean value.

Note that this type shadows the unstaged Scala Boolean. In the case where an unstaged Boolean type is required, use
the full scala.Boolean name.

Infix methods

class Boolean
def unary_!: Boolean

Negates the given boolean expression.

def &&(y: Boolean): Boolean
Boolean AND.
Compares two Booleans and returns true if both are true.

def ||(y: Boolean): Boolean
Boolean OR.
Compares two Booleans and returns true if at least one is true.

def ^(y: Boolean): Boolean
Boolean exclusive-or (XOR).
Compares two Booleans and returns true if exactly one is true.

def !=(y: Boolean): Boolean
Value inequality (equivalent to exclusive-or).
Compares two Booleans and returns true if exactly one is true.

def ==(y: Boolean): Boolean
Value equality, equivalent to exclusive-nor (XNOR).
Compares two Booleans and returns true if both are true or both are false

def toString: String
Creates a printable String from this value

[NOTE] This method is unsynthesizable, and can be used only on the CPU or in simulation.

FixPt

FixPt[S,I,F] represents an arbitrary precision fixed point representation. FixPt values may be signed or unsigned.
Negative values, if applicable, are represented in twos complement.

The type parameters for FixPt are:

S BOOL Signed representation TRUE | FALSE
I INT Number of integer bits (_1 - _64)
F INT | Number of fractional bits (_0 - _64)

1.1. API 9
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Note that numbers of bits use the underscore prefix as integers cannot be used as type parameters in Scala.

Type Aliases

Specific types of FixPt values can be managed using type aliases. New type aliases can be created using syntax like
the following:

type Q16_16 = FixPt[TRUE,_16,_16]

Spatial defines the following type aliases by default:

type IntN FixPt[TRUE,_N,_0] Signed, N bit integer (_2 - _128)
type UIntN FixPt[TRUE,_N,_0] Unsigned, N bit integer (_2 - _128)
type Char FixPt[TRUE,_8,_0] Signed, 8 bit integer
type Short FixPt[TRUE,_16,_0] Signed, 16 bit integer
type Int FixPt[TRUE,_32,_0] Signed, 32 bit integer
type Index FixPt[TRUE,_32,_0] Signed, 32 bit integer (indexing)
type Long FixPt[TRUE,_64,_0] Signed, 64 bit integer

Note that the Char, Short, Int, and Long types shadow their respective unstaged Scala types. In the case where an
unstaged type is required, use the full scala.* name.

Infix methods

The following infix methods are defined on all FixPt classes. When the method takes a right hand argument, only
values of the same FixPt class can be used for this argument.

class FixPt[S,I,F]
def unary_-(): FixPt[S,I,F]

Returns negation of this fixed point value.

def unary_~(): FixPt[S,I,F]
Returns bitwise inversion of this fixed point value.

def + (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point addition.

def - (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point subtraction.

def * (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point multiplication.

def / (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point division.

def % (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point modulus.

Continued on next page
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Table 1 – continued from previous page
class FixPt[S,I,F]
def \*\*(exp: scala.Int): FixPt[S,I,F]

Integer exponentiation, implemented in hardware as a reduction tree with exp inputs.

def *& (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point multiplication with unbiased rounding.

After multiplication, probabilistically rounds up or down to the closest representable number.

def /& (that: FixPt[S,I,F]): FixPt[S,I,F]
Fixed point division with unbiased rounding.

After division, probabilistically rounds up or down to the closest representable number.

def <+> (that: FixPt[S,I,F]): FixPt[S,I,F]
Saturating fixed point addition.

Addition which saturates at the largest or smallest representable number upon over/underflow.

def <-> (that: FixPt[S,I,F]): FixPt[S,I,F]
Saturating fixed point subtraction.

Subtraction which saturates at the largest or smallest representable number upon over/underflow.

def <*> (that: FixPt[S,I,F]): FixPt[S,I,F]
Saturating fixed point multiplication.

Multiplication which saturates at the largest or smallest representable number upon over/underflow.

def </> (that: FixPt[S,I,F]): FixPt[S,I,F]
Saturating fixed point division.

Division which saturates at the largest or smallest representable number upon over/underflow.

def <*&> (that: FixPt[S,I,F]): FixPt[S,I,F]
Saturating fixed point multiplication with unbiased rounding.

After multiplication, probabilistically rounds up or down to the closest representable number.
After rounding, also saturates at the largest or smallest representable number upon over/underflow.

def </&> (that: FixPt[S,I,F]): FixPt[S,I,F]
Saturating fixed point division with unbiased rounding.

After division, probabilistically rounds up or down to the closest representable number.
After rounding, also saturates at the largest or smallest representable number upon over/underflow.

Continued on next page
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Table 1 – continued from previous page
class FixPt[S,I,F]
def < (that: FixPt[S,I,F]): MBoolean

Less than comparison.

Returns true if this value is less than that value. Otherwise returns false.

def <=(that: FixPt[S,I,F]): MBoolean
Less than or equal comparison.

Returns true if this value is less than or equal to that value. Otherwise returns false.

def > (that: FixPt[S,I,F]): MBoolean
Greater than comparison

Returns true if this value is greater than that value. Otherwise returns false.

def >=(that: FixPt[S,I,F]): MBoolean
Greater than or equal comparison.

Returns true if this value is greater than or equal to that value. Otherwise returns false.

def !=(that: FixPt[S,I,F]): Boolean
Value inequality comparison.
Returns true if this value is not equal to the right hand side. Otherwise returns false.

def !=(that: FixPt[S,I,F]): Boolean
Value equality comparison.
Returns true if this value is equal to the right hand side. Otherwise returns false.

def & (that: FixPt[S,I,F]): FixPt[S,I,F]
Bit-wise AND.

def | (that: FixPt[S,I,F]): FixPt[S,I,F]
Bit-wise OR.

def ^ (that: FixPt[S,I,F]): FixPt[S,I,F]
Bit-wise XOR.

def <<(that: FixPt[S,I,_0]): FixPt[S,I,F]
Logical shift left.

def >>(that: FixPt[S,I,_0]): FixPt[S,I,F]
Arithmetic (sign-preserving) shift right.

def >>>(that: FixPt[S,I,_0]): FixPt[S,I,F]
Logical (zero-padded) shift right.

Continued on next page
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Table 1 – continued from previous page
class FixPt[S,I,F]
def as[T:Type:Bits]: T

Re-interprets this value’s bits as the given type, without conversion.

def apply(i: scala.Int): Bit
Returns the given bit in this value.
0 corresponds to the least significant bit (LSB).

def apply(range: Range): Vector[Bit]
Returns a vector of bits based on the given range.
The range must be statically determinable values.

def reverse: FixPt[S,I,F]
Returns a fixed point value with this value’s bits in reverse order.

def to[T:Type:Bits]: T
Converts this value to the given type.

Currently supported types are FixPt, FltPt, and String.

def toString: String
Creates a printable String representation of this value.

NOTE: This method is unsynthesizable, and can be used only on the CPU or in simulation.

Specialized infix methods

These methods are defined on only specific classes of FixPt values.

subclass Int (aliases: Index, FixPt[TRUE, _32, _0])
def ::(end: Int): Range

Creates a Range with this as the start (inclusive), the given end (noninclusive), and step of 1.

def by(step: Int): Range
Creates a Range with start of 0 (inclusive), this value as the end (noninclusive), and the given step.

def until(end: Int): Range
Creates a Range with this as the start (inclusive), the given end (noninclusive), and step of 1.

FltPt

FltPt[G,E] represents an arbitrary precision, IEEE-754-like representation. FltPt values are always assumed to be
signed.

The type parameters for FltPt are:

1.1. API 13
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G INT Number of significand bits, including sign bit (_2 - _64)
E INT Number of exponent bits (_1 - _64)

Note that numbers of bits use the underscore prefix as integers cannot be used as type parameters in Scala.

Type Aliases

Specific types of FltPt values can be managed using type aliases. New type aliases can be created using::

type MyType = FltPt[_##,_##]

Spatial defines the following type aliases by default:

type Half FltPt[_11,_5] IEEE-754 half precision
type Float FltPt[_24,_8] IEEE-754 single precision
type Double FltPt[_53,_11] IEEE-754 double precision

Note that the Float and Double types shadow their respective unstaged Scala types. In the case where an unstaged type
is required, use the full scala.* name.

Infix methods
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class FltPt[G,E]
def unary_-(): FltPt[G,E]

Returns the negation of this floating point value.

def + (that: FltPt[G,E]): FltPt[G,E]
Floating point addition.

def - (that: FltPt[G,E]): FltPt[G,E]
Floating point subtraction.

def * (that: FltPt[G,E]): FltPt[G,E]
Floating point multiplication.

def / (that: FltPt[G,E]): FltPt[G,E]
Floating point division.

def \*\*(exp: scala.Int): FltPt[G,E]
Integer exponentiation, implemented in hardware as a reduction tree with exp inputs.

def < (that: FltPt[G,E]): MBoolean
Less than comparison.

Returns true if this value is less than that value. Otherwise returns false.

def <=(that: FltPt[G,E]): MBoolean
Less than or equal comparison.

Returns true if this value is less than or equal to that value. Otherwise returns false.

def > (that: FltPt[G,E]): MBoolean
Greater than comparison.

Returns true if this value is greater than that value. Otherwise returns false.

def >=(that: FltPt[G,E]): MBoolean
Greater than or equal comparison.

Returns true if this value is less than that value. Otherwise returns false.

def !=(that: FltPt[G,E]): Boolean
Value inequality comparison.
Returns true if this value is not equal to the right hand side. Otherwise returns false.

def !=(that: FltPt[G,E]): Boolean
Value equality comparison.
Returns true if this value is equal to the right hand side. Otherwise returns false.

def as[T:Type:Bits]: T
Re-interprets this value’s bits as the given type, without conversion.

def apply(i: scala.Int): Bit
Returns the given bit in this value.
0 corresponds to the least significant bit (LSB).

def apply(range: Range): Vector[Bit]
Returns a vector of bits based on the given range.
The range must be statically determinable values.

def reverse: FltPt[G,E]
Returns a floating point value with this value’s bits in reverse order.

def to[T:Type:Bits]: T
Converts this value to the given type.

Currently supported types are FixPt, FltPt, and String.

def toString: String
Creates a printable String representation of this value.

NOTE: This method is unsynthesizable, and can be used only on the CPU or in simulation.
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Unit

Like Scala, Unit is a type representing no return value in Spatial. It is similar to void in Java or C++.

Type Classes

Arith

Type class used to supply evidence that type T has basic arithmetic operations defined on it.

Abstract methods

trait Arith[T]
def negate(x: T): T

Returns the negation of the given value.

def plus(x: T, y: T): T
Returns the result of adding x and y.

def minus(x: T, y: T): T
Returns the result of subtracting y from x.

def times(x: T, y: T): T
Returns the result of multiplying x and y.

def divide(x: T, y: T): T
Returns the result of dividing x by y.

Bits

The Bits type class is used to supply evidence that a type T is representable by a statically known number of bits.

Abstract Methods

1.1. API 16
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trait Bits[T]
def length: scala.Int

Returns the minimum number of bits required to represent type T.

def zero: T
Returns the zero value for type T.

def one: T
Returns the one value for type T.

def random(max: Option[T]): T
Generates a pseudorandom value uniformly distributed between 0 and max.
If max is unspecified, type T’s default maximum is used instead.
For FixPt types, the default maximum is the maximum representable number.
For FltPt types, the default maximum is 1.
For composite Tuple2 and Struct types, the maximum is determined per component.

Related methods

def zero[T:Bits]: T
Returns the zero value for type T.

def one[T:Bits]: T
Returns the one value for type T.

def random[T:Bits]: T
Generates a pseudorandom value uniformly distributed between 0 and the default maximum for type T.

def random[T:Bits](max: T): T
Generates a pseudorandom value uniformly distributed between 0 and max.

Infix methods

Instances of types which have evidence of Bits also have infix methods defined on them:

1.1. API 17
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def apply(i: Int): Bit
Returns the given bit in this value.
0 corresponds to the least significant bit (LSB).

def apply(range: Range): BitVector
Returns a slice of the bits in this word as a VectorN.
The range must be statically determinable with a stride of 1.
The range is inclusive for both the start and end.
The range can be big endian (e.g. **3::0**) or little endian (e.g. **0::3**).
In both cases, element 0 is always the least significant element.

For example, **x(3::0)** returns a Vector of the 4 least significant bits of **x**.

def as[B:Type:Bits]: B
Re-interprets this value’s bits as the given type, without conversion.
If B has fewer bits than this value’s type, the MSBs will be dropped.
If B has more bits than this value’s type, the resulting MSBs will be zeros.

def reverse: A
Returns a value of the same type with this value’s bits in reverse order.

def takeX(offset: scala.Int): VectorX[Bit]
Returns a slice of X bits of this value starting at the given offset from the LSB.
To satisfy Scala’s static type analysis, each bit-width has a separate method.

For example, **x.take3(1)** returns the 3 least significant bits of x after the LSB
as a Vector3[Bit].

def takeXMSB(scala.Int): VectorX[Bit]
Returns a slice of X bits of this value, starting at the given offset from the MSB.
To satisfy Scala’s static type analysis, each bit-width has a separate method.
Slices between 1 and 128 bits are currently supported.

For example, **x.take3MSB(1)** returns the 3 most significant bits of x after the MSB
as a Vector3[Bit].

def asXb: VectorX[Bit]
Returns a view of this value’s bits as a X-bit Vector.
To satisfy Scala’s static analysis, each bit-width has a separate method.
Conversions between 1 and 128 bits are currently supported.

If X is smaller than this value’s total bits, the MSBs will be dropped.
If X is larger than this value’s total bits, the resulting MSBs will be zeros.
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Mem

Type class used to supply evidence that type T is a local memory, potentially with multiple dimensions.

Abstract Methods

trait Mem[T,C]
def load(mem: C[T], indices: Seq[Index], en: Bit): T

Loads an element from mem at the given multi-dimensional address indices with enable en.

def store(mem: C[T], indices: Seq[Index], data: T, en: Bit): Unit
Stores data into mem at the given multi-dimensional address indices with enable en.

def iterators(mem: C[T]): Seq[Counter]
Returns a Seq of counters which define the iteration space of the given memory mem.

def par(mem: C[T]): Option[Index]
Returns the parallelization annotation for this memory.

Num

Combination of Arith, Bits, and Order type classes

Abstract Methods
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trait Num[T] extends Arith[T] with Bits[T] with Order[T]
def toFixPt[S:BOOL,I:INT,F:INT](x: T): FixPt[S,I,F]

Converts x to a FixPt value.

def toFltPt[G:INT,E:INT](x: T): FltPt[G,E]
Converts x to a FltPt value.

def fromInt(x: scala.Int, force: Boolean = true): T
Returns the closest representable value of type T to x.
If force is true, gives a warning when the conversion is not exact.

def fromLong(x: scala.Long, force: Boolean = true): T
Returns the closest representable value of type T to x.
If force is true, gives a warning when the conversion is not exact.

def fromFloat(x: scala.Float, force: Boolean = true): T
Returns the closest representable value of type T to x.
If force is true, gives a warning when the conversion is not exact.

def fromDouble(x: scala.Double, force: Boolean = true): T
Returns the closest representable value of type T to x.
If force is true, gives a warning when the conversion is not exact.

def maxValue: T
Returns the largest, finite, positive value representable by type T.

def minValue: T
Returns the most negative, finite value representable by type T.

def minPositiveValue: T
Returns the smallest positive (nonzero) value representable by type T.

Order

Type class used to supply evidence that type T has basic ordering operations defined on it.

Abstract Methods
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trait Order[T]
def lessThan(a: T, b: T): MBoolean

Returns true if a is less than b, false otherwise.

def lessThanOrEqual(a: T, b: T): MBoolean
Returns true if a is less than or equal to b, false otherwise.

def equal(a: T, b: T): MBoolean
Returns true if a is equal to b, false otherwise.

Type

Type class used to supply evidence that type T is representable in the Spatial compiler.

This type class is primarily used to distinguish between unstaged values, i.e. Scala collections and primitives, and
staged, Spatial values.

Math

Commonly used mathematical operators

Methods
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def abs[T:Type:Num](value: T): T
Returns the absolute value of the supplied numeric value.

def ceil[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Returns the smallest (closest to negative infinity) integer value greater than or equal to x.

def exp[T:Type:Num](x: T)(implicit ctx: SrcCtx): T
Returns the natural exponentiation of x (e raised to the exponent x).

def floor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Returns the largest (closest to positive infinity) integer value less than or equal to x.

def log[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the natural logarithm of x.

def mux[T:Type:Bits](select: Bit, a: T, b: T): T
Creates a multiplexer that returns a when select is true, b otherwise.

def min[T:Type:Bits:Order](a: T, b: T): T
Returns the minimum of the numeric values a and b.

def max[T:Type:Bits:Order](a: T, b: T): T
Returns the maximum of the numeric values a and b.

def pow[G:INT,E:INT](base: FltPt[G,E], exp:FltPt[G,E]): FltPt[G,E]
Returns base raised to the power of exp.

def sqrt[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the square root of x.

def sin[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the trigonometric sine of x.

def cos[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the trigonometric cosine of x.

def tan[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the trigonometric tangent of x.

def sinh[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the hyperbolic sine of x.

def cosh[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the hyperbolic cosine of x.

def tanh[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the hyperbolic tangent of x.

def asin[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the arc sine of x.

def acos[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the arc cosine of x.

def atan[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Returns the arc tangent of x.
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Approximate Methods

Some of the trigonometric functions are not yet supported in the Chisel backend yet. As a placeholder, or to minimize
future hardware costs, the following Taylor series approximations are predefined:

def sin_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for trigonometric sine from -pi to pi

def cos_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for trigonometric cosine from -pi to pi

def exp_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for natural exponential

def exp_taylor[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Taylor series expansion for natural exponential

def log_taylor[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for natural log to third degree.

def log_taylor[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Taylor series expansion for natural log to third degree.

def sqrt_approx[S:BOOL,I:INT,F:INT](x: FixPt[S,I,F]): FixPt[S,I,F]
Taylor series expansion for square root to third degree.

def sqrt_approx[G:INT,E:INT](x: FltPt[G,E]): FltPt[G,E]
Taylor series expansion for square root to third degree.

1.1.2 Acceleratable

This section lists operations which are primarily used for writing accelerator designs.

Annotations

Bound

The bound annotation provides a quick, simple way of annotating the approximate sizes of data consumed by the
application. This is primarily useful in automated design space exploration, where the ideal parallelization factor or
memory size may depend on the size of the data the accelerator will be processing.

The bound annotation is not a guarantee, so no operation optimizations are done as a result of this annotation. It is
purely used to help drive runtime estimation.

While bound can be used outside of the Accel scopes, it currently has no use except in hardware tuning.

To set the bound of a given value, use the syntax:

bound(x) = 64

This tells the compiler to expect the value x to be approximately 64 at runtime.
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DSE Parameters

To help drive automated design space exploration, Spatial includes syntax for users to explicitly annotate a value as
a design parameter. These values are typically used to set the size of on-chip scratchpads like SRAM memories or to
tune the parallelization/unrolling factors of Controllers.

Parameters have two parts: a default value that is used when compiler DSE is not run, and an associated range within
which the compiler should explore.

There are two ways of creating explicit parameters in Spatial:

param(3)

This creates an integer parameter with a default value of 3. The range is left to be determined by the compiler.
Alternatively, the user can set the range explicitly using:

1 (1 -> 10)
4 (1 -> 2 -> 10)

The first example shows a parameter with a default of 1, and a range of [1, 10]. The second example shows a parameter
with a default of 4, and a range of {1, 2, 4, 8, 10} (stride of 2, including 1).

Controllers

Fold

Fold is a control node which takes an initial value and many scalar values and combines them into one value using some
associative operator. Unless otherwise disabled, the compiler will attempt to automatically pipeline and parallelize
Fold nodes. A Fold consists of a map function, which is responsible for producing the scalar values, and a reduction
function to describe how the values should be combined.

Calling any form of Fold returns the accumulator which, at the end of the loop, will contain the final result of the
reduction.

Static methods
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object Fold
def apply[T](initial: T)(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]

Fold over a one dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.

def apply[T](initial: T)(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Fold over a two dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.

def apply[T](initial: T)(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce: (T,T) =>
T): Reg[T]

Fold over a three dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.

def apply[T](initial: T)(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map: List[Int]
=> T)(reduce: (T,T) => T): Reg[T]

Fold over an 4+ dimensional space with implicit accumulator but explicit initial value.
Returns the accumulator used to implement this reduction.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

def apply[T](accum: Reg[T])(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]
Fold over a one dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Fold over a two dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce:
(T,T) => T): Reg[T]

Fold over a three dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map:
List[Int] => T)(reduce: (T,T) => T): Reg[T]

Fold over an 4+ dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

Foreach

The Foreach controller is similar to a for loop. Significantly, however, unless explicitly told otherwise, the compiler
will assume each iteration of Foreach is independent, and will attempt to parallelize and pipeline the body. Foreach
has no usable return value.
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Static methods

object Foreach
def apply(ctr: Counter)(func: Int => Unit): Unit

Foreach over a one dimensional space.

def apply(ctr1: Counter, ctr2: Counter)(func: (Int, Int) => Unit): Unit
Foreach over a two dimensional space.

def apply(ctr1: Counter, ctr2: Counter, ctr3: Counter)(func: (Int, Int, Int) => Unit): Unit
Foreach over a three dimensional space.

def apply(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(func: List[Int] => Unit):
Unit

Foreach over a 4+ dimensional space.
Note that func is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

MemFold

MemFold describes the reduction across multiple local memories. It functions essentially the same way as a Mem-
Reduce, except that it uses the existing value of the accumulator at the start of the reduction as the initial value of the
accumulator, rather than resetting. Like MemReduce, unless otherwise disabled, the compiler will try to parallelize
both the creation of multiple memories and the reduction of each of these memories into a single accumulator.

Static methods

object MemFold
def apply[T,C[T]](accum: C[T])(ctr: Counter)(map: Int => C[T])(reduce: (T,T) => T): C[T]

On-chip memory fold over a one dimensional space.
Returns the accumulator accum.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => C[T])(reduce: (T,T) => T): C[T]
On-chip memory fold over a two dimensional space.
Returns the accumulator accum.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) =>
C[T])(reduce: (T,T) => T): C[T]

On-chip memory fold over a three dimensional space.
Returns the accumulator accum.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5:
Counter*)(map: List[Int] => C[T])(reduce: (T,T) => T): C[T]

On-chip memory fold over a 4+ dimensional space.
Returns the accumulator accum.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.
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MemReduce

MemReduce describes the reduction across multiple local memories. Like Reduce, MemReduce requires both a map
and a reduction function. However, in MemReduce, the map describes the creation and population of a local memory
(typically an SRAM). The reduction function still operates on scalars, and is used to combine local memories together
element-wise. Unlike Reduce, MemReduce always requires an explicit accumulator. Unless otherwise disabled, the
compiler will then try to parallelize both the creation of multiple memories and the reduction of each of these memories
into a single accumulator.

Static methods

object MemReduce
def apply[T,C[T]](accum: C[T])(ctr: Counter)(map: Int => C[T])(reduce: (T,T) => T): C[T]

On-chip memory reduction over a one dimensional space.
Returns the accumulator accum.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => C[T])(reduce: (T,T) => T): C[T]
On-chip memory reduction over a two dimensional space.
Returns the accumulator accum.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) =>
C[T])(reduce: (T,T) => T): C[T]

On-chip memory reduction over a three dimensional space.
Returns the accumulator accum.

def apply[T,C[T]](accum: C[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5:
Counter*)(map: List[Int] => C[T])(reduce: (T,T) => T): C[T]

On-chip memory reduction over a 4+ dimensional space.
Returns the accumulator accum.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

Parallel

Parallel is a control node which informs the compiler to schedule any inner control nodes in a fork-join manner.

Note: Parallel will be soon be deprecated for general use as the scheduling algorithms in the Spatial compiler improve.

Static methods

object Parallel
def apply(body: => Unit): Unit

Creates a parallel fork-join controller. Waits on completion of all controllers in the body.
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Reduce

Reduce is a control node which takes many scalar values and combines them into one value using some associative
operator. Unless otherwise disabled, the compiler will attempt to automatically pipeline and parallelize Reduce nodes.
A Reduce consists of a map function, which is responsible for producing scalar values, and a reduction function to
describe how the values should be combined.

Calling any form of Reduce returns the accumulator which, at the end of the loop, will contain the final result of the
reduction.

Static methods
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object Reduce
def apply[T](identity: T)(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]

Reduction over a one dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

def apply[T](identity: T)(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Reduction over a two dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

def apply[T](identity: T)(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce: (T,T) =>
T): Reg[T]

Reduction over a three dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.

def apply[T](identity: T)(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map:
List[Int] => T)(reduce: (T,T) => T): Reg[T]

Reduction over an 4+ dimensional space with implicit accumulator but explicit identity value.
Returns the accumulator used to implement this reduction.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

def apply[T](accum: Reg[T])(ctr: Counter)(map: Int => T)(reduce: (T,T) => T): Reg[T]
Reduction over a one dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter)(map: (Int, Int) => T)(reduce: (T,T) => T): Reg[T]
Reduction over a two dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter)(map: (Int, Int, Int) => T)(reduce:
(T,T) => T): Reg[T]

Reduction over a three dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.

def apply[T](accum: Reg[T])(ctr1: Counter, ctr2: Counter, ctr3: Counter, ctr4: Counter, ctr5: Counter*)(map:
List[Int] => T)(reduce: (T,T) => T): Reg[T]

Reduction over an 4+ dimensional space with explicit accumulator.
Returns the accumulator used to implement this reduction.
Note that the map function is on a List of iterators.
The number of iterators will be the same as the number of counters supplied.

Off-Chip Memories

BufferedOut

BufferedOut defines an addressable output stream from the accelerator, implemented in hardware as an SRAM buffer
which is asynchronously (and implicitly) used to drive a set of output pins.
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BufferedOut is similar in functionality to StreamOut, but allows address and frame-based writing. This is useful, for
example, in video processing, when video needs to be processed on a frame-by-frame basis rather than a pixel-by-pixel
basis.

In Spatial, BufferedOuts are specified outside the Accel block, in host code.

Static methods

object BufferedOut
def apply[T:Type:Bits](bus: Bus): BufferedOut[T]

Creates a BufferedOut of type T connected to the specified bus.
The size of the buffer is currently fixed at 240 x 320 elements.

Infix methods

class BufferedOut[T]
def update(row: Index, col: Index, data: T): Unit

Write data to the given two dimensional address.

Bus

In Spatial, Buses are predefined input/output pins available on supported FPGA targets. They are accessed using the
static target object available in Spatial apps.

They currently have no corresponding syntax, and are used only to create StreamIn and StreamOut ports.

DRAM

DRAMs are pointers to locations in the accelerator’s main memory comprising dense multi-dimensional arrays. They
are the primary form of communication of data between the host and the accelerator. Data may be loaded to and from
the accelerator in contiguous chunks (Tiles), or by bulk scatter and gather operations (SparseTiles).

Up to to 5-dimensional DRAMs are currently supported. Dimensionality of a DRAM instance is encoded by the
subclass of DRAM. DRAM1, for instance represents a 1-dimensional DRAM.

A dense DRAMDenseTile can be created from a DRAM either using address range selection or by implicit conversion.
When a Tile is created implicitly, it has the same address space as the entire original DRAM.

In Spatial, DRAMs are specified outside the Accel scope in the host code.

Static Methods
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object DRAM
def apply[T:Type:Bits](length: Index): DRAM1[T]

Creates a reference to a 1-dimensional array in main memory with the given length.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.

def apply[T:Type:Bits](d1: Index, d2: Index): DRAM2[T]
Creates a reference to a 2-dimensional array in main memory with given rows and cols.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.

def apply[T:Type:Bits](d1: Index, d2: Index, d3: Index): DRAM3[T]
Creates a reference to a 3-dimensional array in main memory with given dimensions.

Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.

def apply[T:Type:Bits](d1: Index, d2: Index, d3: Index, d4: Index): DRAM4[T]
Creates a reference to a 4-dimensional array in main memory with given dimensions.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.

def apply[T:Type:Bits](d1: Index, d2: Index, d3: Index, d4: Index, d5: Index): DRAM5[T]
Creates a reference to a 5-dimensional array in main memory with given dimensions.
Dimensions of a DRAM should be statically calculable functions of constants, parameters, and ArgIns.

Infix methods

abstract class DRAM[T]
def address: Int64

Returns the 64-bit physical address in main memory of the start of this DRAM

def dims: List[Index]
Returns a Scala List of the dimensions of this DRAM
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class DRAM1[T] extends DRAM[T]
def size: Index

Returns the total number of elements in this DRAM1.

def length: Index
Returns the total number of elements in this DRAM1.

def apply(range: Range): DRAMDenseTile1[T]
Creates a reference to a dense region of this DRAM1 for creating burst loads and stores.

def apply(addrs: SRAM1[Index]): DRAMSparseTile[T]
Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers
using all addresses in addrs.

def apply(addrs: SRAM1[Index], size: Index): DRAMSparseTile[T]
Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers
using the first size addresses in addrs.

def apply(addrs: FIFO[Index]): DRAMSparseTile[T]
Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers
using all addresses in addrs.

def apply(addrs: FIFO[Index], size: Index): DRAMSparseTile[T]
Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers
using the first size addresses in addrs.

def apply(addrs: FILO[Index]): DRAMSparseTile[T]
Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers
using all addresses in addrs.

def apply(addrs: FILO[Index], size: Index): DRAMSparseTile[T]
Creates a reference to a sparse region of this DRAM1 for use in scatter and gather transfers
using the first size addresses in addrs.

def store(data: SRAM1[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.

def store(data: FIFO[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.

def store(data: FILO[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.

def store(data: RegFile1[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.
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class DRAM2[T] extends DRAM[T]
def rows: Index

Returns the number of rows in this DRAM2

def cols: Index
Returns the number of columns in this DRAM2

def size: Index
Returns the total number of elements in this DRAM2

def apply(row: Index, cols: Range)
Creates a reference to a dense slice of a row of this DRAM2 for creating burst loads and stores.

def apply(rows: Range, col: Index)
Creates a reference to a dense slice of a column of this DRAM2 for creating burst loads and stores.

def apply(rows: Range, cols: Range)
Creates a reference to a 2-dimensional, dense region of this DRAM2 for creating burst loads and stores.

def store(sram: SRAM2[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.

def store(regs: RegFile2[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.
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class DRAM3[T] extends DRAM[T]
def dim0: Index

Returns the first dimension for this DRAM3.

def dim1: Index
Returns the second dimension for this DRAM3.

def dim2: Index
Returns the third dimension for this DRAM3.

def size: Index
Returns the total number of elements in this DRAM3.

def apply(p: Index, r: Index, c: Range)
Creates a reference to a 1-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def apply(p: Index, r: Range, c: Index)
Creates a reference to a 1-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def apply(p: Range, r: Index, c: Index)
Creates a reference to a 1-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def apply(p: Index, r: Range, c: Range)
Creates a reference to a 2-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def apply(p: Range, r: Index, c: Range)
Creates a reference to a 2-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def apply(p: Range, r: Range, c: Index)
Creates a reference to a 2-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def apply(p: Range, r: Range, c: Range)
Creates a reference to a 3-dimensional, dense region of this DRAM3 for creating burst loads and stores.

def store(sram: SRAM3[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.
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class DRAM4[T] extends DRAM[T]
def dim0: Index

Returns the first dimension of this DRAM4.

def dim1: Index
Returns the second dimension of this DRAM4.

def dim2: Index
Returns the third dimension of this DRAM4.

def dim3: Index
Returns the fourth dimension of this DRAM4.

def size: Index
Returns the total number of elements in this DRAM4.

def apply(q: Index, p: Index, r: Index, c: Range)
Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Index, p: Index, r: Range, c: Index)
Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Index, p: Range, r: Index, c: Index)
Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Index, r: Index, c: Index)
Creates a reference to a 1-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Index, p: Index, r: Range, c: Range)
Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Index, r: Index, c: Range)
Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Range, r: Index, c: Index)
Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Index, p: Range, r: Index, c: Range)
Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Index, r: Range, c: Index)
Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Index, p: Range, r: Range, c: Index)
Creates a reference to a 2-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Index, p: Range, r: Range, c: Range)
Creates a reference to a 3-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Index, r: Range, c: Range)
Creates a reference to a 3-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Range, r: Index, c: Range)
Creates a reference to a 3-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Range, r: Range, c: Index)
Creates a reference to a 3-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def apply(q: Range, p: Range, r: Range, c: Range)
Creates a reference to a 4-dimensional, dense region of this DRAM4 for creating burst loads and stores.

def store(data: SRAM4[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.
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class DRAM5[T] extends DRAM[T]
def dim0: Index

Returns the first dimension of this DRAM5.

def dim1: Index
Returns the second dimension of this DRAM5.

def dim2: Index
Returns the third dimension of this DRAM5.

def dim3: Index
Returns the fourth dimension of this DRAM5.

def dim4: Index
Returns the fifth dimension of this DRAM5.

def size: Index
Returns the total number of elements in this DRAM5.

def apply(x: Index, q: Index, p: Index, r: Index, c: Range): DRAMDenseTile1[T]
Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Index, r: Range, c: Index): DRAMDenseTile1[T]
Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Range, r: Index, c: Index): DRAMDenseTile1[T]
Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Index, r: Index, c: Index): DRAMDenseTile1[T]
Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Index, r: Index, c: Index): DRAMDenseTile1[T]
Creates a reference to a 1-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Index, r: Range, c: Range): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Range, r: Index, c: Range): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Range, r: Range, c: Index): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Index, r: Index, c: Range): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Index, r: Range, c: Index): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

Continued on next page
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Table 2 – continued from previous page
class DRAM5[T] extends DRAM[T]
def apply(x: Index, q: Range, p: Range, r: Index, c: Index): DRAMDenseTile2[T]

Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Index, r: Index, c: Range): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Index, r: Range, c: Index): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Range, r: Index, c: Index): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Index, r: Index, c: Index): DRAMDenseTile2[T]
Creates a reference to a 2-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Index, p: Range, r: Range, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Index, r: Range, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Range, r: Index, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Range, r: Range, c: Index): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Index, r: Range, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Range, r: Index, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Index, p: Range, r: Range, c: Index): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Index, r: Index, c: Range): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Index, r: Range, c: Index): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Range, r: Index, c: Index): DRAMDenseTile3[T]
Creates a reference to a 3-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Index, q: Range, p: Range, r: Range, c: Range): DRAMDenseTile4[T]
Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores.

Continued on next page
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Table 2 – continued from previous page
class DRAM5[T] extends DRAM[T]
def apply(x: Range, q: Index, p: Range, r: Range, c: Range): DRAMDenseTile4[T]

Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Index, r: Range, c: Range): DRAMDenseTile4[T]
Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Range, r: Index, c: Range): DRAMDenseTile4[T]
Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Range, r: Range, c: Index): DRAMDenseTile4[T]
Creates a reference to a 4-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def apply(x: Range, q: Range, p: Range, r: Range, c: Range): DRAMDenseTile5[T]
Creates a reference to a 5-dimensional, dense region of this DRAM5 for creating burst loads and stores.

def store(data: SRAM5[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this DRAM’s region of main memory.

Implicit methods

def createTile1[T](dram: DRAM1[T]): DRAMDenseTile1[T]
Implicitly converts a DRAM1 to a DRAMDenseTile1 with the same address space.

def createTile2[T](dram: DRAM2[T]): DRAMDenseTile2[T]
Implicitly converts a DRAM2 to a DRAMDenseTile2 with the same address space.

def createTile3[T](dram: DRAM3[T]): DRAMDenseTile3[T]
Implicitly converts a DRAM3 to a DRAMDenseTile3 with the same address space.

def createTile4[T](dram: DRAM4[T]): DRAMDenseTile4[T]
Implicitly converts a DRAM4 to a DRAMDenseTile4 with the same address space.

def createTile2[T](dram: DRAM5[T]): DRAMDenseTile5[T]
Implicitly converts a DRAM5 to a DRAMDenseTile5 with the same address space.

DRAMDenseTile

A DRAMDenseTile describes a continguous slice of a DRAM memory’s address space which can be loaded onto the
accelerator for processing or which can be updated with results once FPGA computation is complete.

Infix methods

class DRAMDenseTile
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class DRAMDenseTile1[T] extends DRAMDenseTile[T]
def store(data: SRAM1[T]): Unit

Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

def store(data: FIFO[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

def store(data: FILO[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

def store(data: RegFile1[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

class DRAMDenseTile2[T] extends DRAMDenseTile[T]
def store(data: SRAM2[T]): Unit

Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

def store(data: RegFile2[T]): Unit
Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

class DRAMDenseTile3[T] extends DRAMDenseTile[T]
def store(data: SRAM3[T]): Unit

Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

class DRAMDenseTile4[T] extends DRAMDenseTile[T]
def store(data: SRAM4[T]): Unit

Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

class DRAMDenseTile5[T] extends DRAMDenseTile[T]
def store(data: SRAM5[T]): Unit

Creates a dense, burst transfer from the given on-chip data to this tiles’s region of main memory.

DRAMSparseTile

A DRAMSparseTile describes a sparse section of a DRAM memory which can be loaded onto the accelerator using
a gather operation, or which can be updated using a scatter operation.

Infix methods
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class DRAMSparseTile
def scatter(data: SRAM1[T]): Unit

Creates a sparse transfer from the given on-chip data to this sparse region of main memory.

def scatter(data: FIFO[T]): Unit
Creates a sparse transfer from the given on-chip data to this sparse region of main memory.

def scatter(data: FILO[T]): Unit
Creates a sparse transfer from the given on-chip data to this sparse region of main memory.

StreamIn

StreamIn defines a hardware bus used to receive streaming data from outside of the FPGA. StreamIns may not be
written to. For streaming outputs, use StreamOut. StreamIns are specified using a Bits - based type and a target Bus.

In Spatial, StreamIns are specified outside the Accel block, in host code.

Static methods

object StreamIn
def apply[T:Type:Bits](bus: Bus): StreamIn[T]

Creates a StreamIn of type T connected to the specified bus pins.

Infix methods

class StreamIn[T]
def value: T

Returns the current value of this StreamIn.
Equivalent in hardware to connecting a wire to the StreamIn’s bus.

Implicit methods

def readStream[T](stream: StreamIn[T]): T
Implicitly creates a wire connecting to the StreamIn’s bus.

StreamOut

StreamOut defines a hardware bus used to output streaming data from the FPGA. StreamOuts may not be read from.
For streaming inputs, use StreamIn. StreamOuts are specified using a Bits - based type and a target Bus.

In Spatial, StreamOuts are specified outside the Accel block, in host code.
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Static methods

object StreamOut
def apply[T:Type:Bits](bus: Bus): StreamOut[T]

Creates a StreamOut of type T connected to the specified target bus pins.

Infix methods

class StreamOut[T]
def :=(data: T): Unit

Connect the given data to this StreamOut.

def :=(data: T, en: Bit): Unit
Connect the given data to this StreamOut with enable en.

On-Chip Memories

Spatial includes a variety of on-chip memory templates for use in accelerator design. Unless otherwise specified, the
size of a specified on-chip memory allocation must always be a statically calculable number in order to map it to
hardware resources.

Additionally, on-chip allocations follow traditional software scoping rules. Allocations done within the scope of
Controllers, for example, logically create new memories on each loop iteration. Unless otherwise specified, the
contents of on-chip memories are undefined upon allocation in order to minimize unnecessary memory initialization.

Counter

Counter is a single hardware counter with an associated start (inclusive), end (exclusive), step size, and parallelization
factor. By default, the parallelization factor is assumed to be a design parameter. Counters can be chained together
using CounterChain, but this is typically done implicitly when creating controllers.

It is generally recommended to create a Range and allow the compiler to implicitly convert this to a Counter, as Range
provides slightly better syntax sugar.

Static Methods
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object Counter
def apply(end: Index): Counter

Creates a Counter with start of 0, given end, and step size of 1.

def apply(start: Index, end: Index): Counter
Creates a Counter with given start and end, and step size of 1.

def apply(start: Index, end: Index, step: Index): Counter
Creates a Counter with given start, end, and step size.

def apply(start: Index, end: Index, step: Index, par: Index): Counter
Creates a Counter with given start, end, step, and par parallelization factor.

CounterChain

CounterChain describes a set of chained hardware counters, where a given counter increments only when the counter
below it wraps around. Order is specified as outermost counter first to innermost counter last.

CounterChains are generally created implicitly for small numbers of counters, and need only be created explicitly for
more than 3 chained counters.

Static methods

object CounterChain
def apply(counters: Counter*): CounterChain

Creates a chain of counters. Order is specified as outermost on the left to innermost on the right.

FIFO

FIFOs (first-in, first-out) are on-chip scratchpads with additional control logic for address-less enqueue/dequeue op-
erations. FIFOs preserve the ordering between elements as they are enqueued. A FIFO’s deq operation always returns
the oldest enqueued element which has not yet been dequeued.

Static methods

object FIFO
def apply[T:Type:Bits](depth: Int): FIFO[T]

Creates a FIFO with given depth.

Depth must be a statically determinable signed integer.

Infix methods

1.1. API 42



Spatial Documentation, Release 0.1

class FIFO[T]
def par(p: Index): FIFO[T] = { val x = FIFO(s); x.p

Annotates that addresses in this FIFO can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.

def empty(): Bit
Returns true when this FIFO contains no elements, false otherwise.

def full(): Bit
Returns true when this FIFO cannot fit any more elements, false otherwise.

def almostEmpty(): Bit
Returns true when this FIFO contains exactly one element, false otherwise.

def almostFull(): Bit
Returns true when this FIFO can fit exactly one more element, false otherwise.

def numel(): Index
Returns the number of elements currently in this FIFO.

def enq(data: T): Unit
Creates an enqueue (write) port of data to this FIFO.

def enq(data: T, en: Bit): Unit
Creates an enqueue (write) port of data to this FIFO, enabled by en.

def deq(): T
Creates a dequeue (destructive read) port from this FIFO.

def deq(en: Bit): T
Creates a dequeue (destructive read) port from this FIFO, enabled by en.

def peek(): T
Creates a non-destructive read port from this FIFO.

def load(dram: DRAMDenseTile1[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

def gather(dram: DRAMSparseTile[T]): Unit
Creates a sparse load from the specified sparse region of DRAM to this on-chip memory.

FILO

FILOs (first-in, last-out) are on-chip scratchpads with additional control logic for address-less enqueue/dequeue op-
erations. FILOs acts as a Stack, reversing the order of elements it receives. A FILO’s pop operation always returns
the most recently pushed element.
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Static methods

object FILO
def apply[T:Type:Bits](size: Index): FILO[T]

Creates a FILO with given depth.

Depth must be a statically determinable signed integer.

Infix methods
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class FILO[T]
def par(p: Index): FILO[T] = { val x = FILO(s); x.p

Annotates that addresses in this FIFO can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.

def empty(): Bit
Returns true when this FILO contains no elements, false otherwise.

def full(): Bit
Returns true when this FILO cannot fit any more elements, false otherwise.

def almostEmpty(): Bit
Returns true when this FILO contains exactly one element, false otherwise.

def almostFull(): Bit
Returns true when this FILO can fit exactly one more element, false otherwise.

def numel(): Index
Returns the number of elements currently in this FILO.

def push(data: T): Unit
Creates a push (write) port to this FILO of data.

def push(data: T, en: Bit): Unit
Creates a conditional push (write) port to this FILO of data enabled by en.

def pop(): T
Creates a pop (destructive read) port to this FILO.

def pop(en: Bit): T
Creates a conditional pop (destructive read) port to this FILO enabled by en.

def peek(): T
Creates a non-destructive read port to this FILO.

def load(dram: DRAMDenseTile1[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

def gather(dram: DRAMSparseTile[T]): Unit
Creates a sparse load from the specified sparse region of DRAM to this on-chip memory.

LineBuffer

LineBuffers are two dimensional, on-chip scratchpads with a fixed size. LineBuffers act as a FIFO on input, support-
ing only queued writes, but support addressed reading like SRAMs. For writes, the current row buffer and column is
maintained using an internal counter. This counter resets every time the controller containing the enqueue completes
execution.
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The contents of LineBuffers are persistent across loop iterations, even when they are declared in an inner scope. Up
to 5-dimensional LineBuffers are currently supported.

Static methods

object LineBuffer
def apply[T:Type:Bits](rows: Index, cols: Index): LineBuffer[T]

Allocates a LineBuffer with given rows and cols.
The contents of this LineBuffer are initially undefined.
rows and cols must be statically determinable integers.

def strided[T:Type:Bits](rows: Index, cols: Index, stride: Index): LineBuffer[T]
Allocates a LineBuffer with given number of rows and cols, and with given stride.
The contents of this LineBuffer are initially undefined.
rows, cols, and stride must be statically determinable integers.

Infix methods

class LineBuffer[T]
def apply(row: Index, col: Index): T

Creates a load port to this LineBuffer at the given row and col.

def apply(row: Index, cols: Range)(implicit ctx: SrcCtx): Vector[T]
Creates a vectorized load port to this LineBuffer at the given row and cols.

def apply(rows: Range, col: Index)(implicit ctx: SrcCtx): Vector[T]
Creates a vectorized load port to this LineBuffer at the given rows and col.

def enq(data: T): Unit
Creates an enqueue (write) port of data to this LineBuffer.

def enq(data: T, en: Bit): Unit
Creates an enqueue (write) port of data to this LineBuffer, enabled by en.

def load(dram: DRAMDenseTile1[T])(implicit ctx: SrcCtx): Unit
Creates a dense transfer from the given region of DRAM to this on-chip memory.

LUT

LUTs are on-chip, read-only memories of fixed size. LUTs can be specified as 1 to 5 dimensional.

LUTs can be created from files using the fromFile methods in the LUT object. This file reading is currently done
at compilation time.

Static methods
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object LUT
def apply[T:Type:Bits](dim: Int)(elems: T*): LUT1[T]

Creates a 1-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int)(elems: T*): LUT2[T]
Creates a 2-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int)(elems: T*): LUT3[T]
Creates a 3-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int, dim4: Int)(elems: T*): LUT4[T]
Creates a 4-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def apply[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int, dim4: Int, dim5: Int)(elems: T*): LUT5[T]
Creates a 5-dimensional read-only lookup table with given elements.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int)(filename: String): LUT1[T]
Creates a 1-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int, dim2: Int)(filename: String): LUT2[T]
Creates a 2-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int)(filename: String): LUT3[T]
Creates a 3-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int, dim4: Int)(filename: String): LUT4[T]
Creates a 4-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

def fromFile[T:Type:Bits](dim1: Int, dim2: Int, dim3: Int, dim4: Int, dim5: Int)(filename: String): LUT5[T]
Creates a 5-dimensional read-only lookup table from the given data file.
Note that this file is read during compilation, not runtime.
The number of supplied elements must match the given dimensions.

Infix methods
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abstract class LUT[T]

class LUT1[T] extends LUT[T]
def apply(i: Index): T

Returns the element at the given address i.

class LUT2[T] extends LUT[T]
def apply(r: Index, c: Index): T

Returns the element at the given address r, c.

class LUT3[T] extends LUT[T]
def apply(r: Index, c: Index, p: Index): T

Returns the element at the given 3-dimensional address.

class LUT4[T] extends LUT[T]
def apply(r: Index, c: Index, p: Index, q: Index): T

Returns the element at the given 4-dimensional address.

class LUT5[T] extends LUT[T]
def apply(r: Index, c: Index, p: Index, q: Index, m: Index): T

Returns the element at the given 5-dimensional address.

Reg

Reg defines a hardware register used to hold a scalar value. The default reset value for a Reg is the numeric zero value
for it’s specified type.

ArgIn, ArgOut, and HostIO are specialized forms of Reg which are used to transfer scalar values to and from the
accelerator. ArgIns and ArgOuts are used for setup values at the initialization of the FPGA. ArgIns may not be written
to, while ArgOuts generally should not be read from. HostIOs are for values which may be continuously changed or
read by the host during FPGA execution.

In Spatial, ArgIns, ArgOuts, and HostIO registers are specified outside the Accel block, in host code.

Static methods
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object Reg
def apply[T:Type:Bits]: Reg[T]

Creates a register of type T with a reset value of zero.

def apply[T:Type:Bits](reset: T): Reg[T]
Creates a register of type T with the given reset value.

object ArgIn
def apply[T:Type:Bits]: Reg[T]

Creates an input argument register of type T with a reset value of zero.

object ArgOut
def apply[T:Type:Bits]: Reg[T]

Creates an output argument register of type T with a reset value of zero.

object HostIO
def apply[T:Type:Bits]: Reg[T]

Creates a host I/O register of type T with a reset value of zero.

Infix methods

class Reg[T]
def value: T

Returns the value currently held by this register.

def :=(data: T): Unit
Writes the given data to this register.

def reset: Unit
Resets the value of this register back to its reset value.

def reset(cond: Bit): Unit
Conditionally resets the value of this register back to its reset value if cond is true.

Implicit methods

def readReg[T](reg: Reg[T]): T
Implicitly reads the value of this register.
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RegFile

RegFiles are on-chip arrays of registers with fixed size. RegFiles currently can be specified as one or two dimensional.
Like other memories in Spatial, the contents of RegFiles are persistent across loop iterations, even when they are
declared in an inner scope.

Using the <<= operator, RegFiles can be used as shift registers. 2-dimensional RegFiles must select a specific row or
column before shifting using regfile(row, *) or regfile(*, col), respectively.

Static methods

object RegFile
def apply[T:Type:Bits](length: Index): RegFile1[T]

Allocates a 1-dimensional Regfile with specified length.

def apply[T:Type:Bits](length: Int, inits: List[T]): RegFile1[T]
Allocates a 1-dimensional RegFile with specified length and initial values inits.

The number of initial values must be the same as the total size of the RegFile.

def apply[T:Type:Bits](rows: Index, cols: Index): RegFile2[T]
Allocates a 2-dimensional RegFile with specified rows and cols.

def apply[T:Type:Bits](rows: Int, cols: Int, inits: List[T]): RegFile2[T]
Allocates a 2-dimensional RegFile with specified rows and cols and initial values inits.

The number of initial values must be the same as the total size of the RegFile

def apply[T:Type:Bits](dim0: Index, dim1: Index, dim2: Index): RegFile3[T]
Allocates a 3-dimensional RegFile with specified dimensions.

def apply[T:Type:Bits](dim0: Int, dim1: Int, dim2: Int, inits: List[T]): RegFile3[T]
Allocates a 3-dimensional RegFile with specified dimensions and initial values inits.

The number of initial values must be the same as the total size of the RegFile

Infix methods

abstract class RegFile[T]
def reset: Unit

Resets this RegFile to its initial values (or zeros, if unspecified).

def reset(cond: Bit): Unit
Conditionally resets this RegFile based on cond to its inital values (or zeros if unspecified).
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class RegFile1[T] extends RegFile[T]
def apply(i: Index): T

Returns the value held by the register at address i.

def update(i: Index, data: T): Unit
Updates the register at address i to hold data.

def <<=(data: T): Unit
Shifts in data into the first register, shifting all other values over by one position.

def <<=(data: Vector[T]): Unit
Shifts in data into the first N registers, where N is the size of the given Vector.
All other elements are shifted by N positions.

def load(dram: DRAM1[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile1[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

class RegFile2[T] extends RegFile[T]
def apply(r: Index, c: Index): T

Returns the value held by the register at row r, column c.

def update(r: Index, c: Index, data: T): Unit
Updates the register at row r, column c to hold the given data.

def apply(i: Index, y: Wildcard)
Returns a view of row i of this RegFile.

def apply(y: Wildcard, i: Index)
Returns a view of column i of this RegFile.

def load(dram: DRAM2[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile2[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.
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class RegFile3[T] extends RegFile[T]
def apply(dim0: Index, dim1: Index, dim2: Index): T

Returns the value held by the register at the given 3-dimensional address.

def update(dim0: Index, dim1: Index, dim2: Index, data: T): Unit
Updates the register at the given 3-dimensional address to hold the given data.

def apply(i: Index, j: Index, y: Wildcard)
Returns a 1-dimensional view of part of this RegFile3.

def apply(i: Index, y: Wildcard, j: Index)
Returns a 1-dimensional view of part of this RegFile3.

def apply(y: Wildcard, i: Index, j: Index)
Returns a 1-dimensional view of part of this RegFile3.

def load(dram: DRAM3[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile3[T]): Unit
Creates a dense, burst load from the specified region of DRAM to this on-chip memory.

SRAM

SRAMs are on-chip scratchpads with fixed size. SRAMs can be specified as multi-dimensional, but the underlying
addressing in hardware is always flat. The contents of SRAMs are persistent across loop iterations, even when they
are declared in an inner scope. Up to 5-dimensional SRAMs are currently supported.

Static methods

object SRAM
def apply[T:Type:Bits](length: Index): SRAM1[T]

Allocates a 1-dimensional SRAM with the specified length.

def apply[T:Type:Bits](rows: Index, cols: Index): SRAM2[T]
Allocates a 2-dimensional SRAM with the specified number of rows and cols.

def apply[T:Type:Bits](p: Index, r: Index, c: Index): SRAM3[T]
Allocates a 3-dimensional SRAM with the specified dimensions.

def apply[T:Type:Bits](q: Index, p: Index, r: Index, c: Index): SRAM4[T]
Allocates a 4-dimensional SRAM with the specified dimensions.

def apply[T:Type:Bits](m: Index, q: Index, p: Index, r: Index, c: Index): SRAM5[T]
Allocates a 5-dimensional SRAM with the specified dimensions.
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Infix methods

abstract class SRAM[T]
def dims: List[Index]

Returns a Scala List of the dimensions of this DRAM

class SRAM1[T] extends SRAM[T]
def length: Index

Returns the total size of this SRAM1.

def size: Index
Returns the total size of this SRAM1.

def par(p: Index): SRAM1[T] = { val x = SRAM1(s); x.p
Annotates that addresses in this SRAM1 can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.

def apply(a: Index): T
Returns the value in this SRAM1 at the given address a.

def update(a: Index, data: T): Unit
Updates the value in this SRAM1 at the given address a to data.

def gather(dram: DRAMSparseTile[T]): Unit
Create a sparse load from the given sparse region of DRAM to this on-chip memory.

Elements will be gathered and stored contiguously in this memory.

def load(dram: DRAM1[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile1[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.
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class SRAM2[T] extends SRAM[T]
def rows: Index

Returns the number of rows in this SRAM2.

def cols: Index
Returns the number of columns in this SRAM2.

def size: Index
Returns the total size of this SRAM2.

def apply(row: Index, col: Index): T
Returns the value in this SRAM2 at the given row and col.

def update(row: Index, col: Index, data: T): Unit
Updates the value in this SRAM2 at the given row and col to data.

def par(p: Index): SRAM2[T] = { val x = SRAM2(s); x.p
Annotates that addresses in this SRAM2 can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.

def load(dram: DRAM2[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile2[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.
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class SRAM3[T] extends SRAM[T]
def dim0: Index

Returns the first dimension of this SRAM3.

def dim1: Index
Returns the second dimension of this SRAM3.

def dim2: Index
Returns the third dimension of this SRAM3.

def size: Index
Returns the total size of this SRAM3.

def apply(a: Index, b: Index, c: Index): T
Returns the value in this SRAM3 at the given 3-dimensional address a, b, c.

def update(a: Index, b: Index, c: Index, data: T): Unit
Updates the value in this SRAM3 at the given 3-dimensional address to data.

def par(p: Index): SRAM3[T] = { val x = SRAM3(s); x.p
Annotates that addresses in this SRAM2 can be read in parallel by factor p.

Used when creating references to sparse regions of DRAM.

def load(dram: DRAM3[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile3[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.
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class SRAM4[T] extends SRAM[T]
def dim0: Index

Returns the first dimension of this SRAM4.

def dim1: Index
Returns the second dimension of this SRAM4.

def dim2: Index
Returns the third dimension of this SRAM4.

def dim3: Index
Returns the fourth dimension of this SRAM4.

def size: Index
Returns the total size of this SRAM4.

def apply(a: Index, b: Index, c: Index, d: Index): T
Returns the value in this SRAM4 at the 4-dimensional address a, b, c, d.

def update(a: Index, b: Index, c: Index, d: Index, data: T): Unit
Updates the value in this SRAM4 at the 4-dimensional address to data.

def load(dram: DRAM4[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile4[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.
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class SRAM5[T] extends SRAM[T]
def dim0: Index

Returns the first dimension of this SRAM5.

def dim1: Index
Returns the second dimension of this SRAM5.

def dim2: Index
Returns the third dimension of this SRAM5.

def dim3: Index
Returns the fourth dimension of this SRAM5.

def dim4: Index
Returns the fifth dimension of this SRAM5.

def size: Index
Returns the total size of this SRAM5.

def apply(a: Index, b: Index, c: Index, d: Index, e: Index): T
Returns the value in this SRAM5 at the 5-dimensional address a, b, c, d, e.

def update(a: Index, b: Index, c: Index, d: Index, e: Index, data: T): Unit
Updates the value in this SRAM5 at the 5-dimensional address to data.

def load(dram: DRAM5[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.

def load(dram: DRAMDenseTile5[T]): Unit
Create a dense, burst load from the given region of DRAM to this on-chip memory.

Scheduling Directives

While much of Spatial’s scheduling is automated, users wishing to fine tune or annotate their applications can do so
using several scheduling directives when declaring loops and controllers.

Pipe

Pipe is the default scheduling directive in Spatial, and doesn’t usually need to be specified. This directive tells the
compiler that the stages of the controller can be overlapped in a pipelined fashion. If the controller contains other
controllers within it, this means that these inner controllers will be executed using coarse-grained pipeline scheduling.

Static methods
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object Pipe
def apply(func: => Unit): Unit

Creates a Unit Pipe, akin to a Foreach with one iteration.

def Fold: Fold
References the Fold object with pipelining specified as the scheduling directive.

def Foreach: Foreach
References the Foreach object with pipelining specified as the scheduling directive.

def MemFold: MemFold
References the MemFold object with pipelining specified as the scheduling directive.

def MemReduce: MemReduce
References the MemReduce object with pipelining specified as the scheduling directive.

def Reduce: Reduce
References the Reduce object with pipelining specified as the scheduling directive.

Sequential

Sequential is a scheduling directive which tells the compiler not to attempt to parallelize or to pipeline inner com-
putation. In this scheduling mode, the controller’s counter will only increment when it’s last stage is complete. This
directive is needed primarily when the algorithm contains long loop-carry dependencies that cannot be optimized
away.

Static methods

object Sequential
def apply(func: => Unit): Unit

Creates a Unit Pipe, akin to a Foreach with one iteration.

def Fold: Fold
References the Fold object with sequential execution specified as the scheduling directive.

def Foreach: Foreach
References the Foreach object with sequential execution specified as the scheduling directive.

def MemFold: MemFold
References the MemFold object with sequential execution specified as the scheduling directive.

def MemReduce: MemReduce
References the MemReduce object with sequential execution specified as the scheduling directive.

def Reduce: Reduce
References the Reduce object with sequential execution specified as the scheduling directive.
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Stream

Stream is a scheduling directive which tells the compiler to overlap inner computation in a fine-grained, streaming
fashion. In controllers which contain multiple control stages, this implies that communication is being done through
FIFO memories. at an element-wise level.

Communication across stages within Stream controllers through any memory except FIFOs is currently disallowed.
Note that this may change as the language evolves.

Static methods

object Stream
def apply(func: => Unit): Unit

Creates a streaming Unit Pipe, akin to a Foreach with one iteration.

def Fold: Fold
References the Fold object with streaming specified as the scheduling directive.

def Foreach: Foreach
References the Foreach object with streaming specified as the scheduling directive.

def MemFold: MemFold
References the MemFold object with streaming specified as the scheduling directive.

def MemReduce: MemReduce
References the MemReduce object with streaming specified as the scheduling directive.

def Reduce: Reduce
References the Reduce object with streaming specified as the scheduling directive.

1.1.3 Host Code

This section lists types and methods which are non-acceleratable, i.e. only available on the CPU or in simulation.

Array

Class and companion object for managing one dimensional arrays on the CPU.

Note that this type shadows the unstaged Scala Array. In the case where an unstaged Array type is required, use the
full scala.Array name.

Constructor

The following syntax is available for constructing Arrays from indexed functions:

(0::32){i => func(i) }
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This returns an Array of size 32 with elements defined by func(i). More general Range forms can also be used,
including strided (e.g. 0::2::8) and offset (e.g. 32::64). The iterator i will iterate over all values in the supplied range.

Static methods

object Array
def tabulate[T:Type](size: Index)(func: Index => T): Array[T]

Returns an immutable Array with the given size and elements defined by func.

def **

def fill[T:Type](size: Index)(func: => T): Array[T] = this.tabulate(size){ _
Returns an immutable Array with the given size and elements defined by func.
Note that while func does not depend on the index, it is still executed size times.

def empty[T:Type](size: Index): Array[T]
Returns an empty, mutable Array with the given size.

def apply[T:Type](elements: T*): Array[T]
Returns an immutable Array with the given elements.

Infix methods
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class Array[T]
def length: Index

Returns the size of this Array.

def apply(i: Index): T
Returns the element at index i.

def update[A](i: Index, data: A)(implicit lift: Lift[A,T]): Unit
Updates the element at index i to data.

def foreach(func: T => Unit): Unit
Applies the function func on each element in the Array.

def map[R:Type](func: T => R): Array[R]
Returns a new Array created using the mapping func over each element in this Array.

def zip[S:Type,R:Type](that: Array[S])(func: (T,S) => R): Array[R]
Returns a new Array created using the pairwise mapping func over each element in this Array
and the corresponding element in that.

def reduce(rfunc: (T,T) => T): T
Reduces the elements in this Array into a single element using associative function rfunc.

def fold(init: T)(rfunc: (T,T) => T): T
Reduces the elements in this Array and the given initial value into a single element
using associative function rfunc.

def filter(cond: T => MBoolean): Array[T]
Returns a new Array with all elements in this Array which satisfy the given predicate cond.

def flatMap[R:Type](func: T => Array[R]): Array[R]
Returns a new Array created by concatenating the results of func applied to all elements in this Array.

def groupByReduce[K:Type,V:Type](key: A => K)(value: A => V)(reduce: (V,V) => V): HashMap[K,V]
Partitions this Array using the key function, then maps each element using value, and
finally combines values in each bin using the associative reduce function.

def mkString(delimeter: String)
Creates a string representation of this Array using the given delimeter.

def mkString(start: String, delimeter: String, stop: String): String
Creates a string representation of this Array using the given delimeter, bracketed by start and stop.

def reshape(rows: Index, cols: Index): Matrix[T]
Returns an immutable view of the data in this Array as a Matrix with given rows and cols.

def reshape(dim0: Index, dim1: Index, dim2: Index): Tensor3[T]
Returns an immutable view of the data in this Array as a Tensor3 with given dimensions.

def reshape(dim0: Index, dim1: Index, dim2: Index, dim3: Index): Tensor4[T]
Returns an immutable view of the data in this Array as a Tensor4 with given dimensions.

def reshape(dim0: Index, dim1: Index, dim2: Index, dim3: Index, dim4: Index): Tensor5[T]
Returns an immutable view of the data in this Array as a Tensor5 with given dimensions.

def !=(that: Array[T]): MBoolean = this.zip(that){(x,y) => x =!
Returns true if this Array and that differ by at least one element, false otherwise.

def ==(that: Array[T]): MBoolean = this.zip(that){(x,y) => x ==
Returns true if this Array and that contain the same elements, false otherwise.
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Debugging Operations

These operations are available for use on the CPU and during simulation to aid runtime debugging.

Methods

def assert(cond: MBoolean, msg: String): Unit
Checks that the given condition cond is true at runtime.
If not, exits the program with the given message.

def assert(cond: MBoolean): Unit
Checks that the given condition cond is true at runtime.
If not, exits the program with a generic exception.

def println(): Unit
Prints an empty line to the console.

def print[T:Type](x: T): Unit
Prints a String representation of the given value to the console.

def println[T:Type](x: T): Unit
Prints a String representation of the given value to the console followed by a linebreak.

def print(x: String): Unit
Prints the given String to the console.

def println(x: String): Unit
Prints the given String to the console, followed by a linebreak.

def printArray[T:Type](array: Array[T], heading: String = “”): Unit
Prints the given Array to the console, preceded by an optional heading.

def printMatrix[T:Type](matrix: Matrix[T], heading: String = “”): Unit
Prints the given Matrix to the console, preceded by an optional heading.

def printTensor3[T:Type](tensor: Tensor3[T], heading: String = “”): Unit
Prints the given Tensor3 to the console, preceded by an optional heading.

def printTensor4[T:Type](tensor: Tensor4[T], heading: String = “”): Unit
Prints the given Tensor4 to the console, preceded by the an optional heading.

def printTensor5[T:Type](tensor: Tensor5[T], heading: String = “”): Unit
Prints the given Tensor5 to the console, preceded by the an optional heading.

File I/O

File I/O operations are available for use on the host PU and during simulation.
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Methods

def loadCSV1D[T:Type](filename: String, delimiter: String)(implicit cast: Cast[String,T]): Array[T]
Loads the CSV at filename as an Array using the supplied delimiter for parsing.
The delimiter defaults to a comma if none is supplied.

def loadCSV2D[T:Type](filename: String, delimiter: String)(implicit cast: Cast[String,T]): Matrix[T]
Loads the CSV at filename as a Matrix, using the supplied element delimiter and linebreaks across rows.

def writeCSV1D[T:Type](array: Array[T], filename: String, delimiter: String): Unit
Writes the given Array to the file at filename using the given delimiter.
If no delimiter is given, defaults to comma.

def writeCSV2D[T:Type](matrix: Matrix[T], filename: String, delimiter: String): Unit
Writes the given Matrix to the file at filename using the given element delimiter.
If no element delimiter is given, defaults to comma.

Under development

The following methods are not yet fully supported. If you need support for these methods, please contact the Spatial
group.

def loadBinary[T:Type:Num](filename: String): Array[T]
Loads the given binary file at filename as an Array.

def writeBinary[T:Type:Num](array: Array[T], filename: String): Unit
Saves the given Array to disk as a binary file at filename.

HashMap

Class and companion object for an immutable map on the host CPU.

Infix methods
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class HashMap[K, V]
def size: Int

Returns the number of key-value pairs stored in this HashMap.

def keys: Array[K]
Returns an Array of all keys stored in this HashMap.

def values: Array[V]
Returns an Array of all values stored in this HashMap.

def apply(key: K): V
Returns the value associated with the given key.

Throws an exception if the given key is not stored in this HashMap

def contains(key: K): Boolean
Returns the value associated with the given key.

Throws an exception if the given key is not stored in this HashMap

Matrix

Class and companion object for dense matrices on the CPU.

Constructor

The following syntax is available for constructing Matrix instances from indexed functions:

(0::16, 0::32){(i,j) => func(i,j) }

This returns a Matrix with 16 rows and 32 columns, with elements defined by func(i,j). More general Range forms can
also be used, including strided (e.g. 0::2::8) and offset (e.g. 32::64). The iterators i and j will iterate over all values in
their respective ranges.

Static methods

object Matrix
def tabulate[T:Type](rows: Index, cols: Index)(func: (Index, Index) => T): Matrix[T]

Returns an immutable Matrix with the given rows and cols and elements defined by func.

def fill[T:Type](rows: Index, cols: Index)(func: => T): Matrix[T] = this.tabulate(rows, cols){(_,_)
Returns an immutable Matrix with the given rows and cols and elements defined by func.
Note that while func does not depend on the index, it is still executed rows*****cols times.

Infix methods
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class Matrix
def rows: Index

Returns the number of rows in this Matrix.

def cols: Index
Returns the number of columns in this Matrix.

def apply(i: Index, j: Index): T
Returns the element at the given two-dimensional address (i, j).

def update(i: Index, j: Index, elem: T): Unit
Updates the element at the given two dimensional address to elem.

def flatten: Array[T]
Returns a flattened, immutable Array view of this Matrix’s data.

def foreach(func: T => Unit): Unit
Applies the function func on each element in this Matrix.

def map[R:Type](func: T => R): Matrix[R]
Returns a new Matrix created using the mapping func over each element in this Matrix.

def zip[S:Type,R:Type](that: Matrix[S])(func: (T,S) => R): Matrix[R]
Returns a new Matrix created using the pairwise mapping func over each element in this Matrix
and the corresponding element in that.

def reduce(rfunc: (T,T) => T): T
Reduces the elements in this Matrix into a single element using associative function rfunc.

def transpose(): Matrix[T] = (0::cols, 0::rows){(j, i)
Returns the transpose of this Matrix.

String

Staged type representing arbitrary length Strings. Note that this type shadows the respective unstaged Scala type. In
the case where an unstaged type is required, use the full name java.lang.String.

Infix methods

class String
def to[T]: T

Converts this String to the specified type

[NOTE] This method is currently defined for:
- FixPt[_,_,_]
- FltPt[_,_]
- Boolean
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Tensor

Tensors are multi-dimension, dense arrays with more than 2 dimensions. Currently 3 - 5 dimension Tensors are
supported.

Like Array and Matrix, Tensors can only be used in host code. In accelerator code, use DRAM (for off-chip) or SRAM
(on-chip) memories for multi-dimensional array support.

Constructors

Spatial includes syntax for constructing Tensor instances from indexed functions.

The following returns a 16 x 32 x 8 Tensor3, with elements defined by func(i,j,k):

(0::16, 0::32, 0::8){(i,j,k) => func(i,j,k) }

A Tensor4 can be constructed in a similar way:

(0::4, 0::16, 0::8, 0::32){(a,b,c,d) => func(a,b,c,d) }

As can a Tensor5:

(0::2, 0::4, 0::5, 0::3, 0::32){(a,b,c,d,e) => func(a,b,c,d,e) }

More general Range forms can also be used, including strided (e.g. 0::2::8) and offset (e.g. 32::64). Iterators (e.g. i, j,
k in the above examples) will iterate over all values in their respective ranges.

Static methods

object Tensor3
def tabulate[T:Type](dim0: Index, dim1: Index, dim2: Index)(func: (Index, Index, Index) => T): Tensor3[T]

Returns an immutable Tensor3 with the given dimensions and elements defined by func.

def fill[T:Type](dim0: Index, dim1: Index, dim2: Index)(func: => T): Tensor3[T]
Returns an immutable Tensor3 with the given dimensions and elements defined by func.
Note that while func does not depend on the index, it is still executed multiple times.

object Tensor4
def tabulate[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index)(func: (Index, Index, Index, Index) =>
T): Tensor4[T]

Returns an immutable Tensor4 with the given dimensions and elements defined by func.

def fill[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index)(func: => T): Tensor4[T]
Returns an immutable Tensor4 with the given dimensions and elements defined by func.
Note that while func does not depend on the index, it is still executed multiple times.
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object Tensor5
def tabulate[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index, dim4: Index)(func: (Index, Index,
Index, Index, Index) => T): Tensor5[T]

Returns an immutable Tensor5 with the given dimensions and elements defined by func.

def fill[T:Type](dim0: Index, dim1: Index, dim2: Index, dim3: Index, dim4: Index)(func: => T): Tensor5[T]
Returns an immutable Tensor5 with the given dimensions and elements defined by func.
Note that while func does not depend on the index, it is still executed multiple times.

Infix methods

class Tensor3[T]
def dim0: Index

Returns the first dimension of this Tensor3.

def dim1: Index
Returns the second dimension of this Tensor3.

def dim2: Index
Returns the third dimension of this Tensor3.

def apply(i: Index, j: Index, k: Index): T
Returns the element in this Tensor3 at the given 3-dimensional address.

def update(i: Index, j: Index, k: Index, elem: T): Unit
Updates the element at the given 3-dimensional address to elem.

def flatten: Array[T]
Returns a flattened, immutable Array view of this Tensor3’s data.

def foreach(func: T => Unit): Unit
Applies the function func on each element in this Tensor3.

def map[R:Type](func: T => R): Tensor3[R]
Returns a new Tensor3 created using the mapping func over each element in this Tensor3.

def zip[S,R:Type](that: Tensor3[S])(func: (T,S) => R): Tensor3[R]
Returns a new Tensor3 created using the pairwise mapping func over each element in this Tensor3
and the corresponding element in that.

def reduce(rfunc: (T,T) => T): T
Reduces the elements in this Tensor3 into a single element using associative function rfunc.
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class Tensor4[T]
def dim0: Index

Returns the first dimension of this Tensor4.

def dim1: Index
Returns the second dimension of this Tensor4.

def dim2: Index
Returns the third dimension of this Tensor4.

def dim3: Index
Returns the fourth dimension of this Tensor4.

def apply(i: Index, j: Index, k: Index, l: Index): T
Returns the element in this Tensor4 at the given 4-dimensional address.

def update(i: Index, j: Index, k: Index, l: Index, elem: T): Unit
Updates the element at the given 4-dimensional address to elem.

def flatten: Array[T]
Returns a flattened, immutable Array view of this Tensor4’s data.

def foreach(func: T => Unit): Unit
Applies the function func on each element in this Tensor4.

def map[R:Type](func: T => R): Tensor4[R]
Returns a new Tensor4 created using the mapping func over each element in this Tensor4.

def zip[S,R:Type](b: Tensor4[S])(func: (T,S) => R): Tensor4[R]
Returns a new Tensor4 created using the pairwise mapping func over each element in this Tensor4
and the corresponding element in that.

def reduce(rfunc: (T,T) => T): T
Reduces the elements in this Tensor4 into a single element using associative function rfunc.
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class Tensor5[T]
def dim0: Index

Returns the first dimension of this Tensor5.

def dim1: Index
Returns the second dimension of this Tensor5.

def dim2: Index
Returns the third dimension of this Tensor5.

def dim3: Index
Returns the fourth dimension of this Tensor5.

def dim4: Index
Returns the fifth dimension of this Tensor5.

def apply(i: Index, j: Index, k: Index, l: Index, m: Index): T
Returns the element in this Tensor5 at the given 5-dimensional addreess.

def update(i: Index, j: Index, k: Index, l: Index, m: Index, elem: T): Unit
Updates the element at the given 5-dimensional address to elem.

def flatten: Array[T]
Returns a flattened, immutable Array view of this Tensor5’s data.

def foreach(func: T => Unit): Unit
Applies the function func on each element in this Tensor5.

def map[R:Type](func: T => R): Tensor5[R]
Returns a new Tensor5 created using the mapping func over each element in this Tensor5.

def zip[S,R:Type](b: Tensor5[S])(func: (T,S) => R): Tensor5[R]
Returns a new Tensor5 created using the pairwise mapping func over each element in this Tensor5
and the corresponding element in that.

def reduce(rfunc: (T,T) => T): T
Reduces the elements in this Tensor5 into a single element using associative function rfunc.

Transfer Operations

These operations are used to transfer scalar values and arrays between the CPU host and the hardware accelerator.
They must be specified explicitly in the host code (not in Accel scopes).

Methods
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def setArg[T](reg: Reg[T], value: T): Unit
Transfer a scalar value from the host to the accelerator through the register reg.
reg should be allocated as the HostIO or ArgIn methods.

def getArg[T:Type:Bits](reg: Reg[T]): T
Transfer a scalar value from the accelerator to the host through the register reg.
reg should be allocated using the HostIO or ArgIn methods.

def setMem[T:Type:Bits](dram: DRAM[T], data: Array[T]): Unit
Transfers the given Array of data from the host’s memory to dram’s region of accelerator DRAM.

def getMem[T:Type:Bits](dram: DRAM[T]): Array[T]
Transfers dram’s region of accelerator DRAM to the host’s memory and returns the result as an Array.

def setMem[T:Type:Bits](dram: DRAM[T], data: Matrix[T]): Unit
Transfers the given Matrix of data from the host’s memory to dram’s region of accelerator DRAM.

def getMatrix[T:Type:Bits](dram: DRAM2[T])(implicit ctx: SrcCtx): Matrix[T]
Transfers dram’s region of accelerator DRAM to the host’s memory and returns the result as a Matrix.

def setMem[T:Type:Bits](dram: DRAM[T], tensor3: Tensor3[T]): Unit
Transfers the given Tensor3 of data from the host’s memory to dram’s region of accelerator DRAM.

def getTensor3[T:Type:Bits](dram: DRAM3[T])(implicit ctx: SrcCtx): Tensor3[T]
Transfers dram’s region of accelerator DRAM to the host’s memory and returns the result as a Tensor3.

def setMem[T:Type:Bits](dram: DRAM[T], tensor4: Tensor4[T]): Unit
Transfers the given Tensor4 of data from the host’s memory to dram’s region of accelerator DRAM.

def getTensor4[T:Type:Bits](dram: DRAM4[T])(implicit ctx: SrcCtx): Tensor4[T]
Transfers dram’s region of accelerator DRAM to the host’s memory and returns the result as a Tensor4.

def setMem[T:Type:Bits](dram: DRAM[T], tensor5: Tensor5[T]): Unit
Transfers the given Tensor5 of data from the host’s memory to dram’s region of accelerator DRAM.

def getTensor5[T:Type:Bits](dram: DRAM5[T])(implicit ctx: SrcCtx): Tensor5[T]
Transfers dram’s region of accelerator DRAM to the host’s memory and returns the result as a Tensor5.

1.1.4 The Spatial Compiler

Compilation

The Spatial Compiler is run using:

bin/spatial <Application Name> [flags]

where <Application Name> is the name of the Spatial application object.
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Compiler Flags

The following compiler flags are available in the Spatial compiler:

–sim Turns on the Scala backend for functional simulation.
–synth Turns on the Chisel RTL backend for cycle-accurate simulation and/or synthesis.
–instru-
ment

Enables RTL instrumentation hooks for manual pipeline balancing analyses

–retime Enables RTL retiming to meet higher clock speeds.
This flag will eventually be enabled by default.

–syncMem Enables synchronous memory operations for all SRAMs to use fewer resources.
Also enables –retime.

–out <dir> Specifies an output directory to place generated code.
Default directory is gen/<app name>.

Advanced Compiler Flags

These flags are primarily for use in development of the Spatial compiler.

–cheapFi-
fos

Uses “cheap” FIFOs if there are no FIFOs with lane-dependent enqueues or dequeues.

–multifile 0-6, default = 4
–naming Turns on useful naming for assistance in debugging generated chisel
–dse Run compiler design space exploration.

Interactivity is planned, but currently just generates a data file.

More to be added. . .

1.2 Tutorial

This section provides a user’s introduction to Spatial to help you get started using the language. Feel free to skip
around using this index or to follow the tutorial step by step. The tutorial is structured as a sequence of applications,
each demonstrating additional complexity and APIs available in Spatial.

1.2.1 0. Getting Started

Prerequisites

First, make sure to download and install the following prerequisites:

• Scala SBT

• Java JDK

While it’s not at all required, it may be easier to learn to use Spatial if you’ve had experience with Scala or a similar
functional programming language in the past. Knowledge of Scala will allow you to use meta-programming to assist
your Spatial designs.

If you’d like, check out this Scala tutorial .

Finally, please sign up for the Spatial users google group if you have any questions.
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Installation via Quickstart (Recommended)

To get started with Spatial, you simply need to clone the spatial-quickstart repo and set your environment:

$ git clone git@github.com:stanford-ppl/spatial-quickstart
$ cd spatial-quickstart
$ export SPATIAL_HOME=`pwd`

You can start writing your apps directly in spatial-lang/src/<filename>.scala. To run a quick test, you
can run the following:

$ bin/spatial Quicktest
$ cd gen/Quicktest && bash run.sh 7

The app called “Quicktest” is in spatial-quicktest/src/Applications.scala. It has one input register,
reads and adds 4 to it in the Accel, and then writes this to an output register.

Installation From Source

Run the following (bash) commands to clone and update the spatial-lang repository:

$ git clone https://github.com/stanford-ppl/spatial-lang.git
$ cd spatial-lang
$ git submodule update --init

This will pull Spatial’s submodules argon, apps, and scala-virtualized.

You may need to export your JAVA_HOME environment variable to point to your Java installation (usually /usr/bin)

You are now ready to compile the language. Run the following:

$ cd spatial-lang # Navigate to root of spatial-lang repository
$ sbt compile

A good habit would be to pull from these repositories often and run sbt compile in your spatial-lang directory.

To run a quick test, you can run the following:

$ bin/spatial InOutArg
$ cd gen/InOutArg && bash run.sh 7

The app called “InOutArg” is in spatial-lang/apps/src/UnitTests.scala. It has one input register,
reads and adds 4 to it in the Accel, and then writes this to an output register.

That’s it! Up next, you will learn how to use the language by working through a series of examples. The concepts you
will learn in these tutorials are listed below. Feel free to skip around the apps as you find convenient:

• Hello, World!

• Application skeleton (import statements, application creation, accel scope, host scope)

• ArgIn

• ArgOut

• HostIO

• DRAM

• SRAM

• Reg
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• Typing system

• Data transfer between host and accel (setArg, setMem, getArg, getMem, load, store, gather, scatter)

• Basic debugging hooks

• Compiling an app

• Dot Product

• Tiling

• Reduce and Fold

• Sequential execution and Coarse-grain pipelining

• Parallelization

• Basic buffering and banking

• General Matrix Multiply (GEMM)

• MemReduce and MemFold

• Debugging with instrumentation

• Advanced banking

• Advanced buffering

• Differentiator & Sobel Filter

• LineBuffer

• ShiftRegister

• LUT

• Spatial Functions and Multifile Projects

• Needleman-Wunsch

• FSM

• Branching

• FIFO

• Systolic Arrays

• File IO and text management

• Asserts, Breakpoints, and Sleep

1.2.2 1. Hello, Spatial!

Catalog of Features

In this section, you will learn about the following components in Spatial:

• Application skeleton (import statements, application creation, accel scope, host scope)

• DRAM

• SRAM

• ArgIn
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• ArgOut

• HostIO

• Reg

• Typing system

• Data transfer between host and accel (setArg, setMem, getArg, getMem, load, store, gather, scatter)

• Basic debugging hooks

• Compiling an app

Application Overview

In this section, you will see how to put together the bare-minimum Spatial application. While the code does not do
any “meaningful” work, it demonstrates the basic primitives that almost all applications have and is intended to be the
“Hello, world!” program for hardware. You will start by generating input and output registers to get the accelerator
and host to interact with each other, and then add tile transfers between the off-chip DRAM and on-chip SRAM. You
will then learn what functions are provided to test functionality and utilize the host. Finally, you will learn the basic
compilation flows for testing the functionality of the algorithm, cycle-accurate simulation of the generated RTL, and
bitstream generation to deploy to a supported FPGA or architecture.

Below is a visualization of what we will be doing in this tutorial. We start with a host and an FPGA, both connected
to DRAM. We will then instantiate all of the different ways you can get the two processors to interact with each other.
We will create an RTL that will sit inside the FPGA, as well as some C++ code that will sit inside the host. Spatial
automatically instantiates a box called “Fringe,” which is an FPGA-agnostic hardware design that allows the RTL to
interact with peripherals, DRAM, PCIe buses, and whatever else is available on a given SoC or FPGA board.

Application Template

All Spatial programs have a few basic components. The following code example shows each of those components for
an application that is called HelloSpatial:

import spatial.dsl._
import virtualized._

object HelloSpatial extends SpatialApp {

@virtualize
def main() {

Accel {

}

}
}

Compiling and Testing

We will use the above template to learn the process for compiling, simulating, and synthesizing a design. While this
template is empty, you can use this same flow freely as you build your applications in the tutorials below.
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Currently, you should edit and place apps inside of your spatial-lang/apps/src/ directory. Copy-paste the above tem-
plate into a new file in this directory and you are ready to compile.

For information on how to compile your app to a specific target, see the targets page. We recommend beginnig with
either the Scala or VCS backends.

DRAM Transfers

We will now continue developing a Spatial app based on the above skeleton. Please see the end of this section for a
complete, copy-paste version of the code outlined below.

We will now add the code that will allow us to 1) create data inside the host, 2) transfer this data to DRAM where it
can be acessed by the FPGA, 3) load the data, 4) interact with the data in on-chip SRAM, and 5) store the data back to
DRAM where it can be accessed by the host.

First, let’s create a few data structures inside main, above the Accel block:

val data1D = Array.tabulate(64){i => i * 3} // Create 1D array with 64 elements, each
→˓element being index * 3
val data1D_longer = Array.tabulate(1024){i => i} // Create 1D array with 1024 elements
val data2D = (0::64, 0::64){(i,j) => i*100 + j} // Create 64x64 2D, where each element is
→˓row * 100 + col
val data5D = (0::2, 0::2, 0::2, 0::2, 0::16){(i,j,k,l,m) => random[Int](5)} // Create 5D
→˓tensor, the highest dimension tensor currently supported in Spatial, with each element a
→˓random Int between 0 and 5

Now, let’s allocate space in DRAM to memcpy this data to, so that the FPGA can read it later. This code also lives
above the Accel block:

val dram1D = DRAM[Int](64)
val dram1D_longer = DRAM[Int](1024)
val dram2D = DRAM[Int](64,64)
val dram5D = DRAM[Int](2,2,2,2,16)

Next, we can transfer our generated data into these DRAM allocations, still above the Accel block:

setMem(dram1D, data1D)
setMem(dram1D_longer, data1D_longer)
setMem(dram2D, data2D)
setMem(dram5D, data5D)

We can also create a few DRAMs that will be written to by the Accel:

val dram_result2D = DRAM[Int](32,32)
val dram_scatter1D = DRAM[Int](1024)

Now, we will move into the Accel block to create some SRAMs to catch and hold data on-chip:

val sram1D = SRAM[Int](64)
val sram2D = SRAM[Int](32,32)
val sram5D = SRAM[Int](2,2,2,2,16)

With these SRAMs declared, we can load data into them. DRAM is burst-addressable, relatively slow memory. The
Fringe module manages the command and data streams that connect the FPGA to DRAM:

sram1D load dram1D // Load data from a DRAM of matching dimension
sram2D load dram2D(32::64, 0::32 par 16) // Load region from DRAM. In this case, we load the
→˓bottom-left quadrant of data from dram2D
sram5D load dram5D // Load 5D tensor
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In the above snippet, notice that you can parallelize these operations. Parallelization of the leading dimension of the
load into the 2D SRAM means that rather than funnelling a 512-bit burst (consisting of 16 ints that are 32 bits each)
into 1 element at a time, we can store 16 elements at a time (the entire burst) into SRAM at once with each incoming
burst.

Storing data from SRAM back into DRAM is straightforward, and can also have parallelization:

dram_result2D(0::32, 0::32 par 8) store sram2D

The Fringe module also makes it very straightfoward to do scatter and gather operations from DRAM. Because DRAM
is burst-addressable, it can be very inefficient to interact with individual, non-consecutive addresses. The scatter and
gather templates instantiate the control logic, caches, and other support required to efficiently coalesce, manage, and
interact with DRAM at the word level.

val gathered_sram = SRAM[Int](64) // Create SRAM to hold data gathered_sram gather
dram1D_longer(sram1D par 1, 64) // Use the first 64 elements in sram1D as the addresses in
dram1D_longer to collect, and store them into gathered_sram

We can also scatter this data back into DRAM

dram_scatter1D(sram1D par 1, 64) scatter gathered_sram // For the first 64 elements, place element i of
gathered_sram into the address indicated by the i’th element of sram1D

Now, let’s move outside the Accel and load our data back into the host to check if it is correct:

val result_scattered = getMem(dram_scatter1D)
val result2D = getMatrix(dram_result2D) // Collect 2D dram as a "Matrix." Likewise, 3, 4, and
→˓5D regions use "getTensor3", "getTensor4", and "getTensor5"

Finally, let’s check if the data is correct and print the results. Note that while print lines inside the host code will print
for both the Scala and RTL backends, print lines inside the Accel will only print in the Scala backend and will be
ignored in RTL, since there is no straightforward print for FPGAs:

printMatrix(result2D, "Result 2D: ") // printTensor3, printTensor4, and printTensor5 also exist
printArray(result_scattered, "Result Scattered: ")
val gold_2D = (32::64, 0::32){(i,j) => i*100 + j} // Remember we took bottom-left corner
val cksum_2D = gold_2D.zip(result2D){_==_}.reduce{_&&_} // Zip the gold with the result and
→˓check if they are all equal
val cksum_scattered = Array.tabulate(64){i => result_scattered(3*i) == 3*i}.reduce{_&&_} //
→˓Check if every 3 entries is equal to the index
println("2D pass? " + cksum_2D)
println("scatter pass? " + cksum_scattered)

Congratulations! You have completed the DRAM section of the tutorial. Refer back to the targets section for a
refresher on how to test your app.

Below is a copy-pastable version of the code outlined above:

import spatial.dsl._
import virtualized._

object HelloSpatial extends SpatialApp {

@virtualize
def main() {

val data1D = Array.tabulate(64){i => i * 3} // Create 1D array with 64 elements, each
→˓element being index * 3

val data1D_longer = Array.tabulate(1024){i => i} // Create 1D array with 1024 elements
val data2D = (0::64, 0::64){(i,j) => i*100 + j} // Create 64x64 2D, where each

→˓element is row * 100 + col
val data5D = (0::2, 0::2, 0::2, 0::2, 0::16){(i,j,k,l,m) => random[Int](5)} // Create

→˓5D tensor, the highest dimension tensor currently supported in Spatial, with each element a
→˓random Int between 0 and 5 (continues on next page)
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val dram1D = DRAM[Int](64)
val dram1D_longer = DRAM[Int](1024)
val dram2D = DRAM[Int](64,64)
val dram5D = DRAM[Int](2,2,2,2,16)

setMem(dram1D, data1D)
setMem(dram1D_longer, data1D_longer)
setMem(dram2D, data2D)
setMem(dram5D, data5D)

val dram_result2D = DRAM[Int](32,32)
val dram_scatter1D = DRAM[Int](1024)

Accel {
val sram1D = SRAM[Int](64)
val sram2D = SRAM[Int](32,32)
val sram5D = SRAM[Int](2,2,2,2,16)

sram1D load dram1D // Load data from a DRAM of matching dimension
sram2D load dram2D(32::64, 0::32 par 16) // Load region from DRAM. In this case, we load

→˓the bottom-left quadrant of data from dram2D
sram5D load dram5D // Load 5D tensor

dram_result2D(0::32, 0::32 par 8) store sram2D

val gathered_sram = SRAM[Int](64) // Create SRAM to hold data
gathered_sram gather dram1D_longer(sram1D par 1, 64) // Use the first 64 elements in

→˓sram1D as the addresses in dram1D_longer to collect, and store them into gathered_sram

dram_scatter1D(sram1D par 1, 64) scatter gathered_sram // For the first 64 elements, place
→˓element i of gathered_sram into the address indicated by the i'th element of sram1D

}

val result_scattered = getMem(dram_scatter1D)
val result2D = getMatrix(dram_result2D) // Collect 2D dram as a "Matrix." Likewise, 3, 4,

→˓and 5D regions use "getTensor3D", "getTensor4D", and "getTensor5D"

printMatrix(result2D, "Result 2D: ")
printArray(result_scattered, "Result Scattered: ")
val gold_2D = (32::64, 0::32){(i,j) => i*100 + j} // Remember we took bottom-left corner
val cksum_2D = gold_2D.zip(result2D){_==_}.reduce{_&&_} // Zip the gold with the result and

→˓check if they are all equal
val cksum_scattered = Array.tabulate(64){i => result_scattered(3*i) == 3*i}.reduce{_&&_} //

→˓Check if every 3 entries is equal to the index
println("2D pass? " + cksum_2D)
println("scatter pass? " + cksum_scattered)

}
}

ArgIn/Out Interfaces and Typing

We will now continue developing our Spatial app above and add ArgIns, ArgOuts, HostIOs, and Regs.

While most data that people want to process reside inside of DRAM data structures, there are times when you may
want to pass individual arguments between the Accel and the host. Some examples include passing parameters to
the Accel, such as a damping factor in an algorithm like PageRank or data structure dimensions in an algorithm like
GEMM, as well as passing parameters to the host in algorithms like Dot Product. Let us define a few of these registers
above the Accel block inside the main() function:

val argin1 = ArgIn[Int] // Register that is written to by the host and read from by the Accel
val argout1 = ArgOut[Int] // Register that is written to by the Accel and read from by the host

(continues on next page)
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val io1 = HostIO[Int] // Register that can be both written to and read from by the Accel and
→˓the host

By this point, you have probably noticed that we keep specifying everything as an Int in square brackets. These square
brackets are how Scala passes along type arguments. Spatial is a hardware language that supports a few types besides
32-bit integers and you can define them as follows:

type T = FixPt[FALSE, _16, _16] // 32-bit unsigned integer with 16 whole bits and 16 fractional
→˓bits.
type Flt = Float // 32-bit standard Float

Now we can make another argument using the T type:

val argin2 = ArgIn[T]

Now that we have created these registers, we can load values into them:

setArg(argin1, args(0).to[Int]) // Set argument with the first command-line value
setArg(argin2, 7.to[T]) // Args do not necessarily need to be set with command-line values
setArg(io1, args(1).to[Int])

Let’s move into the Accel and interact with these registers:

val reg1 = Reg[Int](5) // Create register with initial value of 5
val reg2 = Reg[T] // Default initial value for a Reg is 0
Pipe{reg1 := argin1} // Load from ArgIn
Pipe{reg2 := argin2} // Load from ArgIn
argout1 := reg1 + reg2.value.to[Int] // Cast the value in reg2 to Int and add it to reg1
io1 := reg1

In the snippet above, you may notice that there are two Pipes. This is the first example of where the user must be
aware of the hardware to understand what logic is actually getting generated. The compiler scopes code into separate
Blocks. Before this point, we have not scoped any code into anything other than the base, global block, meaning all
of the hardware we generate will fire at the same time. In this particular example, we want reg1 and reg2 to be
loaded before we sum them up, and therefore we should scope them out with Pipe in order to ensure the top-level
controller will execute them one after another. Note that if retiming is turned on (see compiler flags), then we would
not need to scope these operations out because all primitives inside of a block are retimed appropriately to ensure their
values arrive as dictated by the code. Without retiming, however, all primitives can happen simultaneously and give
an incorrect result. Later sections will discuss retiming and controller hierarchies further.

Now we can move outside the Accel and read the arg values:

val result1 = getArg(argout1)
val result2 = getArg(io1)

println("Received " + result1 + " and " + result2)
val cksum = (result1 == {args(0).to[Int] + args(1).to[Int]}) && (result2 == args(0).to[Int]) //
→˓The {} brackets are Scala's way of scoping operations
println("ArgTest pass? " + cksum)

Congratulations! You have completed the ArgIn/Out section of the tutorial. Refer back to the targets section for a
refresher on how to test your app.

Final Code

Below is a copy-pastable version of the code outlined above:
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import spatial.dsl._
import virtualized._

object HelloSpatial extends SpatialApp {

@virtualize
def main() {

val argin1 = ArgIn[Int] // Register that is written to by the host and read from by the
→˓Accel

val argout1 = ArgOut[Int] // Register that is written to by the Accel and read from by the
→˓host

val io1 = HostIO[Int] // Register that can be both written to and read from by the Accel
→˓and the host

type T = FixPt[FALSE, _16, _16] // 32-bit unsigned integer with 16 whole bits and 16
→˓fractional bits.

type Flt = Float // 32-bit standard Float

val argin2 = ArgIn[T]

setArg(argin1, args(0).to[Int]) // Set argument with the first command-line value
setArg(argin2, 7.to[T]) // Args do not necessarily need to be set with command-line values
setArg(io1, args(1).to[Int])

val data1D = Array.tabulate(64){i => i * 3} // Create 1D array with 64 elements, each
→˓element being index * 3

val data1D_longer = Array.tabulate(1024){i => i} // Create 1D array with 1024 elements
val data2D = (0::64, 0::64){(i,j) => i*100 + j} // Create 64x64 2D, where each

→˓element is row * 100 + col
val data5D = (0::2, 0::2, 0::2, 0::2, 0::16){(i,j,k,l,m) => random[Int](5)} // Create

→˓5D tensor, the highest dimension tensor currently supported in Spatial, with each element a
→˓random Int between 0 and 5

val dram1D = DRAM[Int](64)
val dram1D_longer = DRAM[Int](1024)
val dram2D = DRAM[Int](64,64)
val dram5D = DRAM[Int](2,2,2,2,16)

setMem(dram1D, data1D)
setMem(dram1D_longer, data1D_longer)
setMem(dram2D, data2D)
setMem(dram5D, data5D)

val dram_result2D = DRAM[Int](32,32)
val dram_scatter1D = DRAM[Int](1024)

Accel {
val sram1D = SRAM[Int](64)
val sram2D = SRAM[Int](32,32)
val sram5D = SRAM[Int](2,2,2,2,16)

sram1D load dram1D // Load data from a DRAM of matching dimension
sram2D load dram2D(32::64, 0::32 par 16) // Load region from DRAM. In this case, we load

→˓the bottom-left quadrant of data from dram2D
sram5D load dram5D // Load 5D tensor

dram_result2D(0::32, 0::32 par 8) store sram2D

val gathered_sram = SRAM[Int](64) // Create SRAM to hold data
gathered_sram gather dram1D_longer(sram1D par 1, 64) // Use the first 64 elements in

→˓sram1D as the addresses in dram1D_longer to collect, and store them into gathered_sram

dram_scatter1D(sram1D par 1, 64) scatter gathered_sram // For the first 64 elements, place
→˓element i of gathered_sram into the address indicated by the i-th element of sram1D

(continues on next page)
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val reg1 = Reg[Int](5) // Create register with initial value of 5
val reg2 = Reg[T] // Default initial value for a Reg is 0
Pipe{reg1 := argin1} // Load from ArgIn
Pipe{reg2 := argin2} // Load from ArgIn
argout1 := reg1 + reg2.value.to[Int] // Cast the value in reg2 to Int and add it to reg1
io1 := reg1

}

val result_scattered = getMem(dram_scatter1D)
val result2D = getMatrix(dram_result2D) // Collect 2D dram as a "Matrix." Likewise, 3, 4,

→˓and 5D regions use "getTensor3D", "getTensor4D", and "getTensor5D"

printMatrix(result2D, "Result 2D: ")
printArray(result_scattered, "Result Scattered: ")
val gold_2D = (32::64, 0::32){(i,j) => i*100 + j} // Remember we took bottom-left corner
val cksum_2D = gold_2D.zip(result2D){_==_}.reduce{_&&_} // Zip the gold with the result and

→˓check if they are all equal
val cksum_scattered = Array.tabulate(64){i => result_scattered(3*i) == 3*i}.reduce{_&&_} //

→˓Check if every 3 entries is equal to the index
println("2D pass? " + cksum_2D)
println("scatter pass? " + cksum_scattered)

val result1 = getArg(argout1)
val result2 = getArg(io1)

println("Received " + result1 + " and " + result2)
val cksum = (result1 == {args(0).to[Int] + args(1).to[Int]}) && (result2 == args(0).to[Int])

→˓// The {} brackets are Scala's way of scoping operations
println("ArgTest pass? " + cksum)

}
}

Stream Interfaces

** This section is still under construction **

Finally, you will see how to create stream interfaces with peripheral devices that your FPGA may have access to.
Generally, these involve LEDs, switches, buttons, GPIO pins, ADC streams, and sensor interfaces. A stream interface
looks like exposed signal pins inside the FPGA and there may or may not be ready/valid signals routed alongside them.
For example, switches are input streams that are always valid and LEDs are output streams that are always ready. A
pixel buffer that may come with an ADC stream will likely have a valid signal to indicate to the Accel that there is
data ready to be dequeued, and the FPGA would need to send back a ready signal to indicate that it is ready to receive
and process new data.

These protocols are abstracted away by the compiler and all the user needs to do is instantiate the interfaces and use
them in the code inside of the appropriate control structures.

Below are some examples on how to use stream interfaces for some peripherals available on the DE1SoC:

val imgIn = StreamIn[Pixel16](target.VideoCamera) // Input stream for camera
val imgOut = BufferedOut[Pixel16](target.VGA) // Output VGA display
val switch = target.SliderSwitch
val swInput = StreamIn[sw3](switch)

More on stream interfaces TBA.

Next, learn how to build a more complicated Spatial app, Dot Product.
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1.2.3 1. Vector Inner Product

Catalog of Features

In this section, you will learn about the following components in Spatial:

• Tiling

• Reduce and Fold

• Sequential execution and Coarse-grain pipelining

• Parallelization

• Basic buffering and banking

Application Overview

Inner product (also called dot product) is an extremely simple linear algebra kernel, defined as the sum of the element-
wise products between two vectors of data. For this example, we’ll assume that the data in this case are 32-bit signed
fixed point numbers with 8 fractional bits. You could, however, also do the same operations with custom struct types.

Data Setup and Validation

Let’s start by creating the data structures above the Accel that we will compute the dot product on. We will expose the
length of these vectors as a command-line argument. We will also write the code below the Accel to ensure we have
the correct result:

import spatial.dsl._
import virtualized._

object DotProduct extends SpatialApp {

@virtualize
def main() {

type T = FixPt[TRUE,_24,_8]

val N = args(0).to[Int]
val length = ArgIn[Int]
setArg(length, N)
val result = ArgOut[T]

val vector1_data = Array.tabulate(N){i => random[T](5)}
val vector2_data = Array.tabulate(N){i => random[T](5)}

val vector1 = DRAM[T](length) // DRAMs can be sized by ArgIns
val vector2 = DRAM[T](length)

setMem(vector1, vector1_data)
setMem(vector2, vector2_data)

Accel {}

val result_dot = getArg(result)
val gold_dot = vector1_data.zip(vector2_data){_*_}.reduce{_+_}
val cksum = gold_dot == result_dot
println("Received " + result_dot + ", wanted " + gold_dot)
println("Pass? " + cksum)

}
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Tiling and Reduce/Fold

Now we will focus our attention on writing the accelerator code. We must first figure out how to process a variable-
sized vector on a fixed hardware design. To do this, we use tiling. Let’s create a val for the tileSize just inside the
main() method:

val tileSize = 64

Now we can break the vectors into 64-element chunks, and then process these chunks locally on the FPGA using the
Reduce construct:

Accel {
result := Sequential.Reduce(Reg[T](0))(length by tileSize){tile => // Returns Reg[T], writes

→˓to ArgOut
val tile1 = SRAM[T](tileSize)
val tile2 = SRAM[T](tileSize)

tile1 load vector1(tile :: tile + tileSize)
tile2 load vector2(tile :: tile + tileSize)

val local_accum = Reg[T](0)
Reduce(local_accum)(tileSize by 1){i => tile1(i) * tile2(i)}{_+_} // Accumulates directly

→˓into local_accum
local_accum

}{_+_}
}

It might seem a bit odd at first that we have the line {_+_} twice in this app. This is because the inner reduce
accumulates over a tile, and the outer reduce accumulates each result we get from each tile. The Reduce construct
assumes that the register that is doing the accumulation will effectively reset on each iteration of its parent controller.
This means that on the first iteration of the innermost reduce, the hardware will write the first product directly to the
register. On the second iteration of this innermost reduce, it will write the current value of local_accum PLUS the next
product. This means that if local_accum were declared to have an initial value of 5, reducing on top of it will start at
0, not 5.

Also, notice the Sequential modifier on the outer reduce loop. This ensures that everything inside of this loop will
happen sequentially and without coarse-grained pipelining. We will play more with this parameter in the next section,
Pipelining and Parallelization.

The Reduce construct takes four pieces of information: 1) an existing Reg or a new Reg in which to accumulate, 2)
a range and step for its counter to scan, 3) a map function, and 4) a reduce function. If a new Reg is declared inside
the Reduce, then the structure returns this register. Importantly, note that a declaration of val local_accum
= Reg[T](0) does not mean that local_accum is reset on every iteration. This is a declaration of hardware and
is always present. It is the contract implicit with the Reduce construct that effectively resets the register. You can
manually reset the register in the code with local_accum.reset.

Alternatively, you can express the Accel for dot product using a Fold. This is similar to a Reduce, except the Reg
is persistent and not reset unless explicitly reset by the user. In the case where a Reg was declared to have an initial
value of 5, the Fold on top of this Reg would start at 5 and not 0. The code would look like this:

Accel {
val accum = Reg[T](0)
Sequential.Foreach(length by tileSize){tile =>

val tile1 = SRAM[T](tileSize)
val tile2 = SRAM[T](tileSize)

tile1 load vector1(tile :: tile + tileSize)
tile2 load vector2(tile :: tile + tileSize)

Fold(accum)(tileSize by 1){i => tile1(i) * tile2(i)}{_+_}
}

(continues on next page)
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result := accum
}

Let’s take a look at the hardware we have generated. The animation below demonstrates how this code will synthesize
and execute.

While the above code appears to be correct, there is a problem when handling edge-cases. If the user inputs a vector
size that is not a multiple of our tileSize, then we will have an issue with the above code on the final iteration.

To fix this, we need to keep track of how many elements we actually want to reduce over each time we execute the
inner pipe:

Accel {
val accum = Reg[T](0)
Sequential.Foreach(length by tileSize){tile =>

val numel = min(tileSize.to[Int], length - tile)
val tile1 = SRAM[T](tileSize)
val tile2 = SRAM[T](tileSize)

tile1 load vector1(tile :: tile + numel)
tile2 load vector2(tile :: tile + numel)

Fold(accum)(numel by 1){i => tile1(i) * tile2(i)}{_+_}
}
result := accum

}

Pipelining and Parallelization

Now we will look into ways to speed up the application we have written above.

The first technique is to pipeline the algorithm. In the animation in the previous section, you will notice that the entire
hardware is working on one tile at a time. It is possible to pipeline this algorithm at a coarse level such that we overlap
the tile loading with the computation. While this boils down to a “prefetching” operation in this particular design,
Spatial allows you to arbitrarily pipeline any operations you have in your algorithm and at any level and over any
depth.

In order to exploit this technique, you simply need to remove the Sequentialmodifier on the outer loop. By default,
all controllers will pipeline their children controllers if no modifiers are added. In this dot product, there are two child
stages inside the outer pipe (parallel load of tiles 1 and 2 is the first stage, and reduction over the tiles is the second
stage). This kind of coarse-grain pipeline is implemented using asynchronous handshaking signals between each child
stage and their respective parent. The resulting code looks like this:

Accel {
val accum = Reg[T](0)
Foreach(length by tileSize){tile =>

val numel = min(tileSize.to[Int], length - tile)
val tile1 = SRAM[T](tileSize)
val tile2 = SRAM[T](tileSize)

tile1 load vector1(tile :: tile + numel)
tile2 load vector2(tile :: tile + numel)

Fold(accum)(numel by 1){i => tile1(i) * tile2(i)}{_+_}
}
result := accum

}
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This code is expressed in the following animation. Notice that the on-chip SRAM is now larger as it consists of a
double buffer. This buffer is what protects one stage of the pipeline from the next. In order to load the next tile into
memory, we must retain the data from the previous tile in such a way that the second stage can consume it. While
this pipelining improves performance, it consumes more area. Spatial will automatically buffer all SRAMs, Regs, and
RegFiles for the user up to whatever depth is required to guarantee correctness. Note that while it is not shown in the
animation, the accumulating register is also duplicated, such that one of the duplicates is a double buffer to guarantee
correctness for its reader.

We will now look at parallelization as another technique to speed up the algorithm. We will return to the version that
uses two Reduce nodes rather than the version that uses the Fold, and this switch will make sense by the end of the
tutorial.

You can think of parallelization of a controller as extending the counter value to hold multiple consecutive values at
once. Specifically, if we parallelize the innermost controller, whose counter value is captured by the variable i, then
this i no longer holds a single value. It becomes a vector of consecutive values. If the parallelization is set to 4, then
it will hold 4 consecutive values and the controller will complete its execution in a quarter of the time.

Because i is used to index into our SRAMs, we need to physically bank our memories in order to ensure that we can
read all of the requested values at the same time. The scratchpad memories on-chip have a single write port and a
single read port, but the language allows the user to read and write to a memory at will. The Spatial compiler figures
out the physical banking, muxing, and duplication of memories that is necessary to ensure the user gets the correct
logical behavior specified in the application. The compiler also generates the necessary reduction tree and parallel
hardware required to feed the reduction loop. The animation below demonstrates this innermost parallelization.

Finally, the language also exposes parallelization at controllers beyond the innermost ones. In this particular appli-
cation, the outer Reduce can be parallelized, enabling us to operate on multiple tiles at the same time in parallel.
When loops containing other controllers and operations are parallelized, the compiler automatically unrolls the body
and duplicates whatever hardware is necessary. It routes the proper lanes of the counter to each of the unrolled bodies
and executes them in parallel. Below is an animation depicting this mode of operation.

Notice that the accumulator in stage 2 is now double-buffered. This is because the final reduction stage of the outer
reduce is actually viewed as a third stage in the hierarchical control scheme. This means that we need to protect
whatever value is in the accumulator when the buffer switches and the third stage prepares to reduce and consume the
partial sums.

The reason we could not use the Fold version with outer parallelization is because it would require us to have
multiple controllers all competing to write to the same register. When there is outer-level parallelization, anything
declared inside the body of the controller goes along for the ride when unrolled. This is why we must declare the
SRAMs inside of the outer loop. In the case of the Fold app, we had to declare the accumulator above the outer loop
so that it is visible at the end when we write the result to the ArgOut. Using an outer reduce lets us work on multiple
tiles in parallel and merge their results in the final stage of the controller.

Final Code

Finally, below is the complete app that includes all of the performance-oriented features outlined in this page of the
tutorial. Refer back to the targets section for a refresher on how to test your app.:

import spatial.dsl._
import virtualized._

object DotProduct extends SpatialApp {

(continues on next page)
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@virtualize
def main() {

type T = FixPt[TRUE,_24,_8]
val tileSize = 64

val N = args(0).to[Int]
val length = ArgIn[Int]
setArg(length, N)
val result = ArgOut[T]

val vector1_data = Array.tabulate(N){i => random[T](5)}
val vector2_data = Array.tabulate(N){i => random[T](5)}

val vector1 = DRAM[T](length) // DRAMs can be sized by ArgIns
val vector2 = DRAM[T](length)

setMem(vector1, vector1_data)
setMem(vector2, vector2_data)

Accel {
result := Reduce(Reg[T](0))(length by tileSize par 2){tile =>

val numel = min(tileSize.to[Int], length - tile)
val tile1 = SRAM[T](tileSize)
val tile2 = SRAM[T](tileSize)

tile1 load vector1(tile :: tile + numel)
tile2 load vector2(tile :: tile + numel)

Reduce(Reg[T](0))(numel by 1 par 4){i => tile1(i) * tile2(i)}{_+_}
}{_+_}

}

val result_dot = getArg(result)
val gold_dot = vector1_data.zip(vector2_data){_*_}.reduce{_+_}
val cksum = gold_dot == result_dot
println("Received " + result_dot + ", wanted " + gold_dot)
println("Pass? " + cksum)

}
}

When you understand the concepts introduced in this page, you may move on to the next example, 3. General Matrix
Multiply (GEMM), where you will learn to perform reductions on memories, include instrumentation hooks to help
balance your pipeline, and see more complicated examples of banking.

1.2.4 3. General Matrix Multiply (GEMM)

Catalog of Features

In this section, you will learn about the following components in Spatial:

• MemReduce and MemFold

• Instrumentation Hooks

• Advanced Banking

• Advanced Buffering
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Application Overview

General Matrix Multiply (GEMM) is a common algorithm in linear algebra, machine learning, statistics, and many
other domains. It provides a more interesting trade-off space than the previous tutorial, as there are many ways to
break up the computation. This includes using blocking, inner products, outer products, and systolic array techniques.
In this tutorial, we will demonstrate how to build a blocked GEMM app that uses outer products, and leave it to the
user to try and build a GEMM version that uses inner products. Later tutorials will show how to use shift registers and
systolic arrays in other applications, but the same techniques can be retroactively applied to this tutorial on GEMM as
well.

Data Setup and Validation

Let’s start by creating the data structures above the Accel that we will set up the matrices and compute the gold check.
We will expose the dimensions of the matrices as command-line arguments.

import spatial.dsl._
import virtualized._

object GEMM extends SpatialApp {

@virtualize
def main() {

type T = FixPt[TRUE,_24,_8]

val M = ArgIn[Int]
val N = ArgIn[Int]
val K = ArgIn[Int]
setArg(M,args(0).to[Int])
setArg(N,args(1).to[Int])
setArg(K,args(2).to[Int])

val a_data = (0::args(0).to[Int], 0::args(2).to[Int]){(i,j) => random[T](3)}
val b_data = (0::args(2).to[Int], 0::args(1).to[Int]){(i,j) => random[T](3)}
val c_init = (0::args(0).to[Int], 0::args(1).to[Int]){(i,j) => 0.to[T]}
val a = DRAM[T](M, K)
val b = DRAM[T](K, N)
val c = DRAM[T](M, N)

setMem(a, a_data)
setMem(b, b_data)
setMem(c, c_init)

Accel {}

val accel_matrix = getMatrix(c)

val gold_matrix = (0::args(0).to[Int], 0::args(1).to[Int]){(i,j) =>
Array.tabulate(args(2).to[Int]){k => a_data(i,k) * b_data(k,j)}.reduce{_+_}

}

printMatrix(accel_matrix, "Received: ")
printMatrix(gold_matrix, "Wanted: ")
val cksum = accel_matrix.zip(gold_matrix){_==_}.reduce{_&&_}
println("Pass? " + cksum)

}
}

Notice that we create an initial matrix for the result and set all values to 0. This is necessary because GEMM using
outer products computes part of a tile of the result and accumulates this on top of what was previously in that tile. This
means we will need to fetch a tile from off-chip DRAM and accumulate a new result on top of that, then write this
new tile back.
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MemReduce and MemFold

The animation below shows how to compute GEMM without tiling, using outer products.

Because we cannot create hardware to handle variable-sized matrices, we must tile the problem. The animation below
shows one valid scheme for doing so. We will set our tile sizes in the M, N, and K dimensions above the Accel as
follows:

val tileM = 16
val tileN = 16
val tileK = 16

Note that this is not necessarily the most efficient implementation of this algorithm. It is simply meant to be an
implementation that demonstrates features of Spatial.

Now let’s write the code to implement this computation. The large arrows and boxes represent matrix multiplies on
the highlighted tiles using outer products. There will be six nested loops: one for each dimension of tiling and one for
each dimension within the tile.

Considering the tiling loops first, this particular animation shows that we are treating the N dimension as the innermost
loop, followed by the M dimension, and finally the K dimension. Below shows the nested loops along with the data
structures and their tile transfers required within each scope. Remember that you may add parallelization wherever
you please:

Accel {
Foreach(K by tileK){kk =>

val numel_k = min(tileK.to[Int], K - kk)
Foreach(M by tileM){mm =>

val numel_m = min(tileM.to[Int], M - mm)
val tileA_sram = SRAM[T](tileM, tileK)
tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
Foreach(N by tileN){nn =>

val numel_n = min(tileN.to[Int], N - nn)
val tileB_sram = SRAM[T](tileK, tileN)
val tileC_sram = SRAM.buffer[T](tileM, tileN)
tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n)
tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)

c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
}

}
}

}

Note that we must compute the numel_* values to handle the edge cases correct, when the tile dimensions do not
evenly divide the full matrices.

Also note that we declare tileC_sram as a .buffer SRAM. If you do not declare it this way, then the compiler will
throw an error about this and explain the issue. You will learn more about this in the Advanced Buffering section
below.

Next, we will implement the full outer product of the tiles that we have brought into the chip:

Accel {
Foreach(K by tileK){kk =>

val numel_k = min(tileK.to[Int], K - kk)
Foreach(M by tileM){mm =>

val numel_m = min(tileM.to[Int], M - mm)

(continues on next page)
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val tileA_sram = SRAM[T](tileM, tileK)
tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
Foreach(N by tileN){nn =>

val numel_n = min(tileN.to[Int], N - nn)
val tileB_sram = SRAM[T](tileK, tileN)
val tileC_sram = SRAM.buffer[T](tileM, tileN)
tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n)
tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)

MemFold(tileC_sram)(numel_k by 1){k =>
val tileK_local = SRAM[T](tileM, tileN)
Foreach(numel_m by 1, numel_n by 1){(i,j) =>

tileK_local(i,j) = tileA_sram(i,k) * tileB_
→˓sram(k,j)

}
tileK_local

}{_+_}

c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
}

}
}

}

Notice that the code added in the above snippet uses a MemFold and creates a new memory called tileK_local
inside of it. The MemFold is similar to the Fold used in the previous 1. Vector Inner Product example, except
it operates on SRAMs and RegFiles rather than Regs. The SRAM returned in the body of the map function of the
MemFold must match the dimensions of the accumulating SRAM given to the controller.

There is also a MemReduce node, which is analogous to the Reduce node for Regs, but this particular node will not
work in this design because we need to accumulate a new partial sum on top of the partial sum that was previously
stored for a particular tile in DRAM. The MemReduce controller will directly write the result of the map function on
the first iteration of the controller (i.e.- when k == 0), and then respect the lambda function (i.e.- addition) for every
iteration after that.

Advanced Buffering

This Accel above already implements coarse-grain pipelining at various levels. For example, the controller whose
counter is nn has three stages in it. The first stage loads tileB_sram and tileC_sram‘‘ in parallel, the second
stage performs the MemFold into tileC_sram, and the third stage writes the resulting tileC_sram back into the
appropriate region of DRAM. This is an example where the compiler will create a triple-buffer for tileC_sram in
order to ensure that the correct values are being worked with when this coarse-grain pipeline fills up and executes.

If you had not declared tileC_sram as a .buffer SRAM, then the compiler is suspicious of your code. This is
because it is generally very easy when specifying pipelined hardware to accidentally create loop-carry dependency
issues. Specifically, in this code, it sees that you write to the SRAM in the first stage, and then write to it again in
the second stage. It is very easy, even for advanced users, to write this kind of structure without realizing it and then
receive an incorrect result when using a cycle-accurate simulator of the hardware because of values “rotating” through
the buffer inadvertently.

The animation below specifically demonstrates the triple buffer tileC_sram in this algorithm.

Note that at the beginning and end of each row, there are a few iterations where parts of the buffer are not being used.
This is because of the way the loops are written, such that we step through each tile in the N dimension before we
increment the tile for M. If you want to write the app such that there are no wasteful fill and drain iterations, you must
combine loops appropriately.
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Advanced Banking

Let’s now add in more optimizations to improve the performance of this application. Specifically, we will parallelize
two of the loops in such a way to expose hierarchical banking. The following code shows the loops for k and j
parallelized by 2 and 4 respectively.:

Accel {
Foreach(K by tileK){kk =>

val numel_k = min(tileK.to[Int], K - kk)
Foreach(M by tileM){mm =>

val numel_m = min(tileM.to[Int], M - mm)
val tileA_sram = SRAM[T](tileM, tileK)
tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
Foreach(N by tileN){nn =>

val numel_n = min(tileN.to[Int], N - nn)
val tileB_sram = SRAM[T](tileK, tileN)
val tileC_sram = SRAM.buffer[T](tileM, tileN)
tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n)
tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)

MemFold(tileC_sram)(numel_k by 1 par 2){k =>
val tileK_local = SRAM[T](tileM, tileN)
Foreach(numel_m by 1, numel_n by 1 par 4){(i,j) =>

tileK_local(i,j) = tileA_sram(i,k) * tileB_
→˓sram(k,j)

}
tileK_local

}{_+_}

c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
}

}
}

}

Now let’s look at what happens to tileB_sram. It’s first and second indices are both parallelized. Index j is
vectorized by 4, while index k is duplicated for two different values of k when the loop is unrolled by 2. This means
we must bank tileB_sram in both the horizontal and vertical dimensions in order to guarantee that all 8 of these
accesses will be able to touch unique banks every time we read from this memory. The animation below demonstrates
how we hierarchically bank this SRAM.

Let’s consider the situation if we instead decided to parallelize a different way. Below is the code for the application
if we chose to parallelize the loading of tileB_sram by 8 while also parallelizing the k loop by 2.:

Accel {
Foreach(K by tileK){kk =>

val numel_k = min(tileK.to[Int], K - kk)
Foreach(M by tileM){mm =>

val numel_m = min(tileM.to[Int], M - mm)
val tileA_sram = SRAM[T](tileM, tileK)
tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
Foreach(N by tileN){nn =>

val numel_n = min(tileN.to[Int], N - nn)
val tileB_sram = SRAM[T](tileK, tileN)
val tileC_sram = SRAM.buffer[T](tileM, tileN)
tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n par 8)
tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)

MemFold(tileC_sram)(numel_k by 1 par 2){k =>
val tileK_local = SRAM[T](tileM, tileN)
Foreach(numel_m by 1, numel_n by 1){(i,j) =>

tileK_local(i,j) = tileA_sram(i,k) * tileB_
→˓sram(k,j)

(continues on next page)
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}
tileK_local

}{_+_}

c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
}

}
}

}

While the hierarchical banking scheme shown above will still work for this case, where we have 2 banks along the
rows and 8 banks along the columns, the Spatial compiler will perform a memory-saving optimization called Diagonal
Banking. In this example, we need to be able to access 8 elements along the column simultaneously, and later in the
app we need to access 2 elements from different rows simultaneously. However, these accesses do not occur at the
same time, so we do not need 16 unique banks (as is implied by the previous example) and can get away with 8 banks.

If the parallelizations of the various accesses are not multiples of each other, the compiler will figure out the most
minimalistic banking scheme that guarantees correctness.

Final Code

Below is the complete GEMM app. See the HelloWorld page for a refresher on how to compile and test an app:

import spatial.dsl._
import virtualized._

object GEMM extends SpatialApp {

@virtualize
def main() {

type T = FixPt[TRUE,_24,_8]
val tileM = 16
val tileN = 16
val tileK = 16

val M = ArgIn[Int]
val N = ArgIn[Int]
val K = ArgIn[Int]
setArg(M,args(0).to[Int])
setArg(N,args(1).to[Int])
setArg(K,args(2).to[Int])

val a_data = (0::args(0).to[Int], 0::args(2).to[Int]){(i,j) => random[T](3)}
val b_data = (0::args(2).to[Int], 0::args(1).to[Int]){(i,j) => random[T](3)}
val c_init = (0::args(0).to[Int], 0::args(1).to[Int]){(i,j) => 0.to[T]}
val a = DRAM[T](M, K)
val b = DRAM[T](K, N)
val c = DRAM[T](M, N)

setMem(a, a_data)
setMem(b, b_data)
setMem(c, c_init)

Accel {
Foreach(K by tileK){kk =>

val numel_k = min(tileK.to[Int], K - kk)
Foreach(M by tileM){mm =>

val numel_m = min(tileM.to[Int], M - mm)
val tileA_sram = SRAM[T](tileM, tileK)

(continues on next page)
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tileA_sram load a(mm::mm+numel_m, kk::kk+numel_k)
Foreach(N by tileN){nn =>

val numel_n = min(tileN.to[Int], N - nn)
val tileB_sram = SRAM[T](tileK, tileN)
val tileC_sram = SRAM.buffer[T](tileM, tileN)
tileB_sram load b(kk::kk+numel_k, nn::nn+numel_n par

→˓8)
tileC_sram load c(mm::mm+numel_m, nn::nn+numel_n)

MemFold(tileC_sram)(numel_k by 1 par 2){k =>
val tileK_local = SRAM[T](tileM, tileN)
Foreach(numel_m by 1, numel_n by 1){(i,j) =>

tileK_local(i,j) = tileA_sram(i,k) *
→˓tileB_sram(k,j)

}
tileK_local

}{_+_}

c(mm::mm+numel_m, nn::nn+numel_n) store tileC_sram
}

}
}

}

val accel_matrix = getMatrix(c)

val gold_matrix = (0::args(0).to[Int], 0::args(1).to[Int]){(i,j) =>
Array.tabulate(args(2).to[Int]){k => a_data(i,k) * b_data(k,j)}.reduce{_+_}

}

printMatrix(accel_matrix, "Received: ")
printMatrix(gold_matrix, "Wanted: ")
val cksum = accel_matrix.zip(gold_matrix){_==_}.reduce{_&&_}
println("Pass? " + cksum)

}
}

Instrumentation Hooks

Now that you have finished writing an algorithm, you will want to try to get the best performance possible. In order to
get optimal performance, it is important to balance the stages in your pipelines. While you could get a good estimate
by eyeballing your code, there is a way to get actual execution cycles on a controller-by-controller basis using a
Spatial/special feature called “instrumentation.”

To turn on instrumentation hooks, use the bin/spatial <app name> --synth --instrument flag when
compiling the app. This flag injects performance counters that count the number of cycles each controller is enabled,
as well as the number of times a particular controller is done. Note that performance counters will only be injected in
the –synth backend.

Once you compile your app, you should run it normally with the run.sh script. You may notice that there are some
extra lines that are spitting out information about the app. Running the run.sh script created a file in your current
directory called instrumentation.txt, which will be used to populate a visualization of your app. Let’s start by opening
up the controller tree:

google-chrome controller_tree.html # Or whatever your favorite browser is (firefox, etc.)

You will get a screen that looks like this.

If you play around with this screen, you will see that this shows you the control hierarchy in your app, and points each
box back to the original source code. To make this a more useful tool, we will now inject the instrumentation results
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into this page. Run the script:

bash scripts/instrument.sh

Now refresh the controller tree page. There should be a lot of red text, similar to the image shown below:

You can now play around with this page and look at how the various stages in your pipelines are performing. We leave
it up to the user to figure out how to use parallelizations and rewrite portions of the app to figure out how to balance
the pipelines and get better performance.

When you understand the concepts introduced in this page, you may move on to the next example, 3. Differentiator &
Sobel Filter, where you will learn to perform reductions on memories, include instrumentation hooks to help balance
your pipeline, and see more complicated examples of banking.

1.2.5 3. Differentiator & Sobel Filter

Catalog of Features

In this section, you will learn about the following components in Spatial:

• LineBuffer

• ShiftRegister

• LUT

• Spatial Functions and Multifile Projects

Application Overview

Convolution is a common algorithm in linear algebra, machine learning, statistics, and many other domains. The
tutorials in this section will demonstrate how to use the building blocks that Spatial provides to do convolutions.

Specifically, we will build a basic differentiator for a time-series using sliding window averaging for an example 1D
convolution. The animation below demonstrates this convolution (credit http://pages.jh.edu/~signals/convolve/index.
html).

We will then build a Sobel Filter to detect edges on an image for an example of 2D convolution. A Sobel filter is the
average of the convolution with the following two kernels:

KernelV:
1 2 1
0 0 0
-1 -2 -1

KernelH:
1 0 -1
2 0 -2
1 0 -1

While this section will not explore convolutions in more than 2 dimensions, it is possible to combine the Spatial prim-
itives demonstrated in this section and previous sections to build up a higher-dimensional convolution. The animation
below demonstrates the 2D convolution with the padding that we will use (credit https://github.com/vdumoulin/conv_
arithmetic). Alternatively, Spatial supports 2D convolutions as matrix multiplies. See (TODO: Link to “toeplitz” API)
for more details.
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TODO: Fix right and bottom padding to match app below

Data Setup and Validation

Let’s start by creating the data structures above the Accel that we will set up the image and filters and compute the
gold check. We will expose the rows of the images as command-line arguments.:

import spatial.dsl._
import virtualized._

object DiffAndSobel extends SpatialApp {

@virtualize
def main() {

val R = args(0).to[Int]
val C = args(1).to[Int]
val vec_len = args(2).to[Int]
val vec_tile = 64
val maxcols = 128 // Required for LineBuffer
val ROWS = ArgIn[Int]
val COLS = ArgIn[Int]
val LEN = ArgIn[Int]
setArg(ROWS,R)
setArg(COLS,C)
setArg(LEN, vec_len)

val window = 16
val x_t = Array.tabulate(vec_len){i =>

val x = i.to[T] * (4.to[T] / vec_len.to[T]).to[T] - 2
-0.18.to[T] * pow(x, 4) + 0.5.to[T] * pow(x, 2) + 0.8.to[T]

}
val h_t = Array.tabulate(16){i => if (i < window/2) 1.to[T] else -1.to[T]}
printArray(x_t, "x_t data:")

val X_1D = DRAM[T](LEN)
val H_1D = DRAM[T](window)
val Y_1D = DRAM[T](LEN)
setMem(X_1D, x_t)
setMem(H_1D, h_t)

val border = 3
val image = (0::R, 0::C){(i,j) => if (j > border && j < C-border && i > border && i < C -

→˓border) (i*16).to[T] else 0.to[T]}
printMatrix(image, "Image:")
val kernelv = Array[T](1,2,1,0,0,0,-1,-2,-1)
val kernelh = Array[T](1,0,-1,2,0,-2,1,0,-1)
val X_2D = DRAM[T](ROWS, COLS)
val Y_2D = DRAM[T](ROWS, COLS)
setMem(X_2D, image)

Accel{}

val Y_1D_result = getMem(Y_1D)
val Y_2D_result = getMatrix(Y_2D)

val Y_1D_gold = Array.tabulate(vec_len){i =>
Array.tabulate(window){j =>

val data = if (i - j < 0) 0 else x_t(i-j)
data * h_t(j)

}.reduce{_+_}
}
val Y_2D_gold = (0::R, 0::C){(i,j) =>

val h = Array.tabulate(3){ii => Array.tabulate(3){jj =>
val img = if (i-ii < 0 || j-jj < 0) 0 else image(i-ii,j-jj)

(continues on next page)
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img * kernelh((2-ii)*3+(2-jj))
}}.flatten.reduce{_+_}
val v = Array.tabulate(3){ii => Array.tabulate(3){jj =>

val img = if (i-ii < 0 || j-jj < 0) 0 else image(i-ii,j-jj)
img * kernelv((2-ii)*3+(2-jj))

}}.flatten.reduce{_+_}
abs(v) + abs(h)

}

printArray(Y_1D_result, "1D Result:")
printArray(Y_1D_gold, "1D Gold:")
printMatrix(Y_2D_result, "2D Result:")
printMatrix(Y_2D_gold, "2D Gold:")

val margin = 0.25.to[T]
val cksum_1D = Y_1D_result.zip(Y_1D_gold){(a,b) => abs(a - b) < margin}.reduce{_&&_}
val cksum_2D = Y_2D_result.zip(Y_2D_gold){(a,b) => abs(a - b) < margin}.reduce{_&&_}
println("1D Pass? " + cksum_1D + ", 2D Pass? " + cksum_2D)

}
}

Note that there is a val called “maxcols.” In the 2D Convolution section, we will demonstrate how the line buffer works
and it will become clear why we must constrain the maximum number of columns in our image for the app to work.

1D Convolution

In order to perform the 1D convolution, we need a pipeline to perform two operations. The first is to load one tile at a
time, and the second is to shift data through a window and perform a dot product between this window and the filter.
We must also do a one-time load of the filter kernel. The snippet below shows this code:

Accel{
val filter_data = RegFile[T](window)
filter_data load H_1D
Foreach(LEN by vec_tile){i =>
val numel = min(vec_tile.to[Int], LEN-i)
val x_tile = SRAM[T](vec_tile)
val y_tile = SRAM[T](vec_tile)
x_tile load X_1D(i::i+numel)

val sr1D = RegFile[T](1,window)
Foreach(numel by 1){j =>

sr1D(0,*) <<= x_tile(j) // Shift new point into sr1D
y_tile(j) = Reduce(Reg[T])(window by 1){k =>

val data = mux(i + j - k < 0, 0.to[T], sr1D(0,k)) // Handle edge case
data * filter_data(k)

}{_+_}
}

Y_1D(i::i+numel) store y_tile
}

}

The app above uses familiar concepts described in previous parts of this tutorial, except for the RegFiles. The first
RegFile, filter_data, is created to hold the filter data. It is equally valid to use an SRAM for this structure,
but it is generally more efficient for small memories to use RegFiles, as this reduces the number of wasted addresses
in a physical BRAM on-chip. The second RegFile, sr1D, is used as a shift register. We use the <<= operator to
indicate that we want to shift into it from the entry address (i.e.- address 0), and move all the existing data backwards
by one address. Later, we will see how to specify strides for shift registers, as well as shift into an entry plane of a
multidimensional shift register.

While this app uses tiles to perform convolution, it is possible to use the shift register in the same way to do convolution
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on streaming data by directly enqueueing to the shift register. Also, it may not seem completely intuitive that we use
the shift register at all, since we can just index into the x_tile directly. However, if you want to parallelize the reduction,
the shift register comes fully banked since it is composed of registers. Parallel accesses to the SRAM directly, with a
sliding window, will result in lots of SRAM duplication and inefficiency.

Finally, there is a mux inside the Reduce map function. This mux is to check if the data in a particular address of the
shift register corresponds to data with a “negative” address in the X_1D data structure.

If you plot the resulting data in a spreadsheet, you should get something that looks like this. We can use these plots as
a sanity check for our differentiator kernel.

Input:

Derivative:

2D Convolution

Now we will focus on the Sobel filter that will perform a 2D convolution. First, we will introduce a LineBuffer
memory structure. A LineBuffer is a special case on an N-buffered 1D SRAM exposed to the user. It allows one or
more rows of DRAM to be buffered into on-chip memory while previous rows can be accessed in a logically-rotating
way. A LineBuffer is generally coupled with a shift register, and the animation below shows the specific usage of this
pair in this tutorial.

Note that in the last frame, the “buffer” row of the line buffer contains row 7 of the image. This is because this line
buffer is physically implemented with four SRAMs and uses access redirection to create the logical behavior shown
in the animation. After the last row is loaded and we drain the last frame, the buffers inside the line buffer will rotate
but no new line will fill the buffer SRAM, leaving behind the data from row 7 even though it will not get used in this
particular case. The Spatial compiler will also determine how to bank and duplicate the SRAMs that compose the line
buffer automatically, should you choose to have a strided convolution.

1.2. Tutorial 95



Spatial Documentation, Release 0.1

It is also possible now to see why we must set a hard cap on the number of columns in the image if we are to use
the line buffer - shift register combination. The logic that handles the rotation of the line buffer rows is tied to the
controller hierarchy that manages the writes and reads about the line buffer. If we were to try to tile this operation
along the columns, then our line buffer would load one tile of the row into the buffer, while row 0 of the line buffer
would contain the previous part of that row. This splitting of a single line is semantically incorrect for convolution.

For this 2D convolution, we also introduce the lookup table (LUT). This is a read-only memory whose values are
known at compile time. It is implemented using registers and muxes to index into it.

The snippet below shows how to generate an accel that performs the operations shown above:

Accel {
val lb = LineBuffer[T](3, maxcols)
val sr = RegFile[T](3, 3)
val kernelH = LUT[T](3,3)(1.to[T], 2.to[T], 1.to[T],

0.to[T], 0.to[T], 0.to[T],
-1.to[T],-2.to[T],-1.to[T])

val kernelV = LUT[T](3,3)(1.to[T], 0.to[T], -1.to[T],
2.to[T], 0.to[T], -2.to[T],
1.to[T], 0.to[T], -1.to[T])

val lineout = SRAM[T](maxcols)
Foreach(ROWS by 1){row =>

lb load X_2D(row, 0::COLS)
Foreach(COLS by 1){j =>

Foreach(3 by 1 par 3){i => sr(i,*) <<= lb(i,j)}
val accumH = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>

val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else
→˓sr(ii, 2 - jj)

img * kernelH(ii,jj)
}{_+_}
val accumV = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>

val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else
→˓sr(ii, 2 - jj)

img * kernelV(ii,jj)
}{_+_}
lineout(j) = abs(accumV.value) + abs(accumH.value)

}
Y_2D(row, 0::COLS) store lineout

}
}

It is possible to improve the performance of this algorithm using parallelization. However, we leave this as an exercise
to the user or direct the user to some example apps written in the spatial-apps repository. While parallelizing every
loop will speed up this algorithm, some loops will give incorrect results if parallelized while others will maintain the
correct result if extra code is added to handle the edge cases appropriately

Spatial Functions and Multifile

Sometimes complicated apps can get very cluttered inside the Accel block so you will want to break your app into
multiple functions, possibly across multiple files. Now we will aim to create the following Accel block, where the
method calls are defined in a separate file:

Accel{
Conv1D(Y_1D, X_1D, H_1D, window, vec_tile) // Output DRAM, Input Data, Kernel
Sobel2D(Y_2D, X_2D, maxcols) // Output DRAM, Input Image

}

We can write the functions used above as follows:

@virtualize
def Conv1D[T:Type:Num](output: DRAM1[T],

(continues on next page)
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input: DRAM1[T],
filter: DRAM1[T],
window: scala.Int, vec_tile: scala.Int): Unit = {

val filter_data = RegFile[T](window)
filter_data load filter
Foreach(input.size by vec_tile){i =>

val numel = min(vec_tile.to[Int], input.size-i)
val x_tile = SRAM[T](vec_tile)
val y_tile = SRAM[T](vec_tile)
x_tile load input(i::i+numel)

val sr1D = RegFile[T](1,window)
Foreach(numel by 1){j =>

sr1D(0,*) <<= x_tile(j) // Shift new point into sr1D
y_tile(j) = Reduce(Reg[T])(window by 1){k =>

val data = mux(i + j - k < 0, 0.to[T], sr1D(0,k)) // Handle edge case
data * filter_data(k)

}{_+_}
}

output(i::i+numel) store y_tile
}

}

@virtualize
def Sobel2D[T:Type:Num](output: DRAM2[T],

input: DRAM2[T], maxcols: scala.Int): Unit = {

val lb = LineBuffer[T](3, maxcols)
val sr = RegFile[T](3, 3)
val kernelH = LUT[T](3,3)(1.to[T], 2.to[T], 1.to[T],

0.to[T], 0.to[T], 0.to[T],
-1.to[T],-2.to[T],-1.to[T])

val kernelV = LUT[T](3,3)(1.to[T], 0.to[T], -1.to[T],
2.to[T], 0.to[T], -2.to[T],
1.to[T], 0.to[T], -1.to[T])

val lineout = SRAM[T](maxcols)
Foreach(input.rows by 1){row =>

lb load input(row, 0::input.cols)
Foreach(input.cols by 1){j =>
Foreach(3 by 1 par 3){i => sr(i,*) <<= lb(i,j)}
val accumH = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else

→˓sr(ii, 2 - jj)
img * kernelH(ii,jj)

}{_+_}
val accumV = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>

val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T] else
→˓sr(ii, 2 - jj)

img * kernelV(ii,jj)
}{_+_}
lineout(j) = abs(accumV.value) + abs(accumH.value)

}
output(row, 0::input.cols) store lineout

}
}

Notice that instead of using the input arguments, ROWS, COLS, and LEN, we can use properties defined on the DRAMs
directly.

You can place these functions anywhere inside of your DiffAndSobel object. If you want to place them inside of a
separate file entirely, then you simply need to make the trait that contains the method definitions extend SpatialApp,
and then have the next file create an object that extends the first trait:
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import virtualized._
import spatial.dsl._

object AccelFile extends FunctionsFile {

@virtualize
def main() {
Accel {

FunctionsFile.fcn_call()
}

}

--------------------------------

import virtualized._
import spatial.dsl._

trait FunctionsFile extends SpatialApp{

@virtualize
def fcn_call() {/* do things */}

}

Final Code

Below is the final code for a single-file, functionized version of the two convolutions discussed in this tutorial. See the
HelloWorld page for a refresher on how to compile and test.:

import spatial.dsl._
import virtualized._

object DiffAndSobel extends SpatialApp {

@virtualize
def Conv1D[T:Type:Num](output: DRAM1[T],

input: DRAM1[T],
filter: DRAM1[T],
window: scala.Int, vec_tile: scala.Int): Unit = {

val filter_data = RegFile[T](window)
filter_data load filter
Foreach(input.size by vec_tile){i =>

val numel = min(vec_tile.to[Int], input.size-i)
val x_tile = SRAM[T](vec_tile)
val y_tile = SRAM[T](vec_tile)
x_tile load input(i::i+numel)

val sr1D = RegFile[T](1,window)
Foreach(numel by 1){j =>

sr1D(0,*) <<= x_tile(j) // Shift new point into sr1D
y_tile(j) = Reduce(Reg[T])(window by 1){k =>
val data = mux(i + j - k < 0, 0.to[T], sr1D(0,k)) // Handle edge case
data * filter_data(k)

}{_+_}
}

output(i::i+numel) store y_tile
}

}

@virtualize
def Sobel2D[T:Type:Num](output: DRAM2[T],

(continues on next page)
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input: DRAM2[T], maxcols: scala.Int): Unit = {

val lb = LineBuffer[T](3, maxcols)
val sr = RegFile[T](3, 3)
val kernelH = LUT[T](3,3)(1.to[T], 2.to[T], 1.to[T],

0.to[T], 0.to[T], 0.to[T],
-1.to[T],-2.to[T],-1.to[T])

val kernelV = LUT[T](3,3)(1.to[T], 0.to[T], -1.to[T],
2.to[T], 0.to[T], -2.to[T],
1.to[T], 0.to[T], -1.to[T])

val lineout = SRAM[T](maxcols)
Foreach(input.rows by 1){row =>

lb load input(row, 0::input.cols)
Foreach(input.cols by 1){j =>
Foreach(3 by 1 par 3){i => sr(i,*) <<= lb(i,j)}
val accumH = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T]

→˓else sr(ii, 2 - jj)
img * kernelH(ii,jj)

}{_+_}
val accumV = Reduce(Reg[T](0.to[T]))(3 by 1, 3 by 1){(ii,jj) =>
val img = if (row - 2 + ii.to[Int] < 0 || j.to[Int] - 2 + jj.to[Int] < 0) 0.to[T]

→˓else sr(ii, 2 - jj)
img * kernelV(ii,jj)

}{_+_}
lineout(j) = abs(accumV.value) + abs(accumH.value)

}
output(row, 0::input.cols) store lineout

}
}

@virtualize
def main() {

type T = FixPt[TRUE,_16,_16]

val R = args(0).to[Int]
val C = args(1).to[Int]
val vec_len = args(2).to[Int]
val vec_tile = 64
val maxcols = 128 // Required for LineBuffer
val ROWS = ArgIn[Int]
val COLS = ArgIn[Int]
val LEN = ArgIn[Int]
setArg(ROWS,R)
setArg(COLS,C)
setArg(LEN, vec_len)

val window = 16
val x_t = Array.tabulate(vec_len){i =>

val x = i.to[T] * (4.to[T] / vec_len.to[T]).to[T] - 2
println(" x " + x)
-0.18.to[T] * pow(x, 4) + 0.5.to[T] * pow(x, 2) + 0.8.to[T]

}
val h_t = Array.tabulate(16){i => if (i < window/2) 1.to[T] else -1.to[T]}
printArray(x_t, "x_t data:")

val X_1D = DRAM[T](LEN)
val H_1D = DRAM[T](window)
val Y_1D = DRAM[T](LEN)
setMem(X_1D, x_t)
setMem(H_1D, h_t)

val border = 3
val image = (0::R, 0::C){(i,j) => if (j > border && j < C-border && i > border && i < C -

→˓border) (i*16).to[T] else 0.to[T]} (continues on next page)
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printMatrix(image, "image: ")
val kernelv = Array[T](1,2,1,0,0,0,-1,-2,-1)
val kernelh = Array[T](1,0,-1,2,0,-2,1,0,-1)
val X_2D = DRAM[T](ROWS, COLS)
val Y_2D = DRAM[T](ROWS, COLS)
setMem(X_2D, image)

Accel{
Conv1D(Y_1D, X_1D, H_1D)
Sobel2D(Y_2D, X_2D)

}

val Y_1D_result = getMem(Y_1D)
val Y_2D_result = getMatrix(Y_2D)

val Y_1D_gold = Array.tabulate(vec_len){i =>
Array.tabulate(window){j =>

val data = if (i - j < 0) 0 else x_t(i-j)
data * h_t(j)

}.reduce{_+_}
}
val Y_2D_gold = (0::R, 0::C){(i,j) =>

val h = Array.tabulate(3){ii => Array.tabulate(3){jj =>
val img = if (i-ii < 0 || j-jj < 0) 0 else image(i-ii,j-jj)
img * kernelh((2-ii)*3+(2-jj))

}}.flatten.reduce{_+_}
val v = Array.tabulate(3){ii => Array.tabulate(3){jj =>

val img = if (i-ii < 0 || j-jj < 0) 0 else image(i-ii,j-jj)
img * kernelv((2-ii)*3+(2-jj))

}}.flatten.reduce{_+_}
abs(v) + abs(h)

}

printArray(Y_1D_result, "1D Result:")
printArray(Y_1D_gold, "1D Gold:")
printMatrix(Y_2D_result, "2D Result:")
printMatrix(Y_2D_gold, "2D Gold:")

val margin = 0.25.to[T]
val cksum_1D = Y_1D_result.zip(Y_1D_gold){(a,b) => abs(a - b) < margin}.reduce{_&&_}
val cksum_2D = Y_2D_result.zip(Y_2D_gold){(a,b) => abs(a - b) < margin}.reduce{_&&_}
println("1D Pass? " + cksum_1D + ", 2D Pass? " + cksum_2D)

}
}

1.2.6 4. Needleman-Wunsch (NW)

Catalog of Features

In this section, you will learn about the following components in Spatial:

• FSM

• Branching

• FIFO

• Systolic Arrays

• File IO and text management

• Asserts, Breakpoints, and Sleep
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Application Overview

The Needleman-Wunsch algorithm is an algorithm used in bioinformatics to align protein or nucleotide sequences. It
builds a scoring matrix based on two strings, and then backtraces through the score matrix to determine the alignment
of minimum error. For more information on the algorithm’s history and implementations, visit the Wikipedia page
(https://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm). The image below (credit Wikipedia) demonstrates a
rough overview of how the algorithm works.

Data Setup and Validation

In this algorithm, we will assume that a domain-expert keeps data files of DNA sequences, seqA.txt and seqB.
txt. We will create an app that will read whatever text is in these files, pass it to the FPGA, return with the best
alignment between the two, and print out the result back into files called alignedA.txt and alignedB.txt. In
order to test if our alignments are “correct,” we will aim to have less than 10% of the entries be in error.:

import spatial.dsl._
import virtualized._

object NW extends SpatialApp {

@virtualize

(continues on next page)
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def main() {
val seqA_text = loadCSV1D[MString]("/home/mattfel/seqA.txt", " ").apply(0) // Loads into

→˓array with 1 string
val seqB_text = loadCSV1D[MString]("/home/mattfel/seqB.txt", " ").apply(0) // Loads into

→˓array with 1 string
println("Aligning " + seqA_text + " and ")
println(" " + seqB_text)

val seqA_data = argon.lang.String.string2num(seqA_text) // Returns array of Int8
val seqB_data = argon.lang.String.string2num(seqB_text) // Returns array of Int8

val seq_length = seqA_data.length
val LEN = ArgIn[Int]
val LEN2x = ArgIn[Int]
setArg(LEN, seq_length)
setArg(LEN2x, seq_length*2)
val seqA = DRAM[Int8](LEN)
val seqB = DRAM[Int8](LEN)
setMem(seqA, seqA_data)
setMem(seqB, seqB_data)
val seqA_aligned = DRAM[Int8](LEN)
val seqB_aligned = DRAM[Int8](LEN2x)

val max_length = 256
val d = argon.lang.String.char2num("-")
val dash = ArgIn[Int8]
setArg(dash,d)
val u = argon.lang.String.char2num("_")
val underscore = ArgIn[Int8]
setArg(underscore,u)

Accel{}

val seqA_aligned_result = getMem(seqA_aligned)
val seqB_aligned_result = getMem(seqB_aligned)

val errors = seqA_aligned_result.zip(seqB_aligned_result){(a,b) => if (a != b && a != d && b
→˓!= d) 1 else 0}.reduce{_+_}

println("Found " + errors + " errors out of " + {seq_length*2} + " characters")
val cksum = errors.to[Float] / (seq_length*2).to[Float] < 0.1.to[Float]
println("Acceptable? " + cksum)

val seqA_aligned_string = argon.lang.String.num2string(seqA_aligned_result)
val seqB_aligned_string = argon.lang.String.num2string(seqB_aligned_result)
println("Aligned A: " + seqA_aligned_string)
println("Aligned B: " + seqB_aligned_string)

}
}

Score Matrix Population

In this first section, we will make a forward pass to fill out the score matrix. In this algorithm, we need to embed two
pieces of information in each matrix entry: the score at that entry and the direction to travel to achieve that score (N,
W, or NW). We will start by defining a new struct that can contain this tuple up above our main():

@struct case class nw_tuple(score: Int16, ptr: Int16)

As we traverse the score matrix, we check the left, top, and top-left entries, add a score update, and check which path
gives us the maximum score for that entry. To determine the additional score when coming from the top-left, we check
if the letter at the top of the column (from string A) matches the letter from the left of the row (from string B). If there
is a match, then this path is rewarded with an addition of 1. If they do not match, then we penalize this path with a
score of -1. We then look at the cost when coming from the left and from the top. These transitions correspond to
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skipping an entry in B and skipping an entry in A, respectively, and we penalize them as they do not correspond to
string matches. This transition is called a “gap.” Let’s now assign vals to keep track of these properties:

val SKIPB = 0 // move left
val SKIPA = 1 // move up
val ALIGN = 2 // move diagonal
val MATCH_SCORE = 1
val MISMATCH_SCORE = -1
val GAP_SCORE = -1

Now, we can write the code that will traverse the matrix from top-left to bottom-right and update each entry of the
score matrix. Note that along the left edge and the top edge of the score matrix, we initialize the scores by -1 each for
each hop away from the top left corner. Then, for each entry, we first compute if there is a match between the elements
in string A and string B. We then proceed to compute the from_left, from_top, and from_diag updates based
on these values and choose the smallest of them. When getting this result, we keep the tuple that consists of both the
new score and the path taken to achieve this new score. Finally, we update the score matrix so that this new value is
available for the next update:

Accel{
val seqa_sram_raw = SRAM[Int8](max_length)
val seqb_sram_raw = SRAM[Int8](max_length)

seqa_sram_raw load seqA(0::LEN)
seqb_sram_raw load seqB(0::LEN)

val score_matrix = SRAM[nw_tuple](max_length+1,max_length+1)

Foreach(LEN+1 by 1){ r =>
Sequential.Foreach(0 until LEN+1 by 1) { c =>
val previous_result = Reg[nw_tuple]
val update = if (r == 0) (nw_tuple(-c.as[Int16], 0)) else if (c == 0) (nw_tuple(-r.

→˓as[Int16], 1)) else {
val match_score = mux(seqa_sram_raw(c-1) == seqb_sram_raw(r-1), MATCH_SCORE.to[Int16],

→˓MISMATCH_SCORE.to[Int16])
val from_top = score_matrix(r-1, c).score + GAP_SCORE
val from_left = previous_result.score + GAP_SCORE
val from_diag = score_matrix(r-1, c-1).score + match_score
mux(from_left >= from_top && from_left >= from_diag, nw_tuple(from_left, SKIPB),

→˓mux(from_top >= from_diag, nw_tuple(from_top,SKIPA), nw_tuple(from_diag, ALIGN)))
}
previous_result := update
if (c >= 0) {score_matrix(r,c) = update}

}
}

}

While it is possible to parallelize the row updates in this algorithm, it is a little tricky because you should not update
any entry until you have all of its three adjacent source entries. See (TODO: link to spatial-apps) for an example on
how to safely parallelize across rows.

Score Matrix Traceback

Now we can traverse the score matrix, starting from the bottom right. We will use a FIFO to store the aligned result,
and a finite state machine (FSM) to handle the back trace and complete when the FIFOs are filled. The state in the
FSM starts at 0, which we use for the state to trace back through the matrix. When we either hit the top edge or the left
edge of the score matrix, we jump to state 1 which is used to pad both of the FIFOs until they fill up. Once the FSM
detects that they are full, it exits and the results are stored to DRAM. The branch conditions in this FSM demonstrate
how we can use if/then/else to arbitrarily execute parts of the hardware.:
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val traverseState = 0
val padBothState = 1
val doneState = 2

val seqa_fifo_aligned = FIFO[Int8](max_length*2)
val seqb_fifo_aligned = FIFO[Int8](max_length*2)
val b_addr = Reg[Int](0)
val a_addr = Reg[Int](0)
b_addr := LEN
a_addr := LEN
val done_backtrack = Reg[Bit](false)
FSM[Int](state => state != 2) { state =>
if (state == traverseState) {

if (score_matrix(b_addr,a_addr).ptr == ALIGN.to[Int16]) {
seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)
done_backtrack := b_addr == 1.to[Int] || a_addr == 1.to[Int]
b_addr :-= 1
a_addr :-= 1

} else if (score_matrix(b_addr,a_addr).ptr == SKIPA.to[Int16]) {
seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)
seqa_fifo_aligned.enq(dash, !done_backtrack)
done_backtrack := b_addr == 1.to[Int]
b_addr :-= 1

} else {
seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
seqb_fifo_aligned.enq(dash, !done_backtrack)
done_backtrack := a_addr == 1.to[Int]
a_addr :-= 1

}
} else if (state == padBothState) {
seqa_fifo_aligned.enq(underscore, !seqa_fifo_aligned.full)
seqb_fifo_aligned.enq(underscore, !seqb_fifo_aligned.full)

} else {}
} { state =>
mux(state == traverseState && ((b_addr == 0.to[Int]) || (a_addr == 0.to[Int])), padBothState,

mux(seqa_fifo_aligned.full || seqb_fifo_aligned.full, doneState, state))
}

seqA_aligned(0::LEN2x) store seqa_fifo_aligned
seqB_aligned(0::LEN2x) store seqb_fifo_aligned

Generally, an FSM is a hardware version of a while loop. It allows you to arbitrarily branch between control structures
and selectively execute code until some breaking state condition is reached.

Asserts, Breakpoints, and Sleep

There are sometimes cases where the app writer wants to escape the app early or pause the app for a period of time.
In this subsection we will explore how to implement the breakpoint/exit and sleep functions in Spatial.

Firstly, we will discuss breakpoints. These could be for debugging purposes, such as determining why a non-
deterministic app is hanging on the FPGA, or for practical purposes, such as handling errors when decompressing
a faulty JPEG header. Spatial allows the user to insert breakpoints arbitrarily in the code and will exit the application
early and report which breakpoint triggered the exit, if any, at runtime.

In this example, we will demonstrate how to use breakpoints in Spatial by assuming the app writer wants to halt the
NW algorithm the first time a character in either string A, string B, or neither is skipped and wants to know which of
these conditions caused the exit:

if (score_matrix(b_addr,a_addr).ptr == ALIGN.to[Int16]) {
...
breakpoint()

(continues on next page)
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} else if (score_matrix(b_addr,a_addr).ptr == SKIPA.to[Int16]) {
...
assert(score_matrix(b_addr,a_addr).ptr != SKIPA.to[Int16], "This is an assert example")

} else {
...
exit()

}

Note that “breakpoint()” in this case is not the same as a breakpoint in software. A breakpoint here causes the entire
app to quit, rather than allowing the user to step through code manually. While functionality to switch from the FPGA’s
built in clock to a manual clock to let the user manually step through cycles may be implemented in the future, there
are no current plans to support this.

The above code may generate output that looks like this if the second breakpoint were reached first (breakpoints are
0-indexed):

===================
Breakpoint 1 triggered!

tutorial.scala:100:23 - This is an assert example
===================

In apps that interact with real external systems, such as pixel buffers, audio devices, and sensors, it may be very useful
to make the FPGA stall for a period of time so that it interacts properly with these systems. It can also be useful in
debugging, to slow down the speed at which a piece of code executes. While grad students may not get much sleep,
Spatial makes it easy to put your FPGA to sleep:

sleep(1000000) // Sleep for ~1000000 cycles, or 8ms for a 125MHz clock

Final Code

Here is the final code for this version of NW:

import spatial.dsl._
import virtualized._

object NW extends SpatialApp {
@struct case class nw_tuple(score: Int16, ptr: Int16)

@virtualize
def main() {
val SKIPB = 0 // move left
val SKIPA = 1 // move up
val ALIGN = 2 // move diagonal
val MATCH_SCORE = 1
val MISMATCH_SCORE = -1
val GAP_SCORE = -1

val seqA_text = loadCSV1D[MString]("/home/ChrisWunsch/seqA.txt", " ").apply(0) // Loads into
→˓array with 1 string

val seqB_text = loadCSV1D[MString]("/home/ChrisWunsch/seqB.txt", " ").apply(0) // Loads into
→˓array with 1 string

println("Aligning " + seqA_text + " and ")
println(" " + seqB_text)

val seqA_data = argon.lang.String.string2num(seqA_text) // Returns array of Int8
val seqB_data = argon.lang.String.string2num(seqB_text) // Returns array of Int8

val seq_length = seqA_data.length
val LEN = ArgIn[Int]
val LEN2x = ArgIn[Int]

(continues on next page)
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setArg(LEN, seq_length)
setArg(LEN2x, seq_length*2)
val seqA = DRAM[Int8](LEN)
val seqB = DRAM[Int8](LEN)
setMem(seqA, seqA_data)
setMem(seqB, seqB_data)
val seqA_aligned = DRAM[Int8](LEN)
val seqB_aligned = DRAM[Int8](LEN2x)

val max_length = 256
val d = argon.lang.String.char2num("-")
val dash = ArgIn[Int8]
setArg(dash,d)
val u = argon.lang.String.char2num("_")
val underscore = ArgIn[Int8]
setArg(underscore,u)

Accel{
val seqa_sram_raw = SRAM[Int8](max_length)
val seqb_sram_raw = SRAM[Int8](max_length)

seqa_sram_raw load seqA(0::LEN)
seqb_sram_raw load seqB(0::LEN)

val score_matrix = SRAM[nw_tuple](max_length+1,max_length+1)

Foreach(LEN+1 by 1){ r =>
Sequential.Foreach(0 until LEN+1 by 1) { c =>
val previous_result = Reg[nw_tuple]
val update = if (r == 0) (nw_tuple(-c.as[Int16], 0)) else if (c == 0) (nw_tuple(-r.

→˓as[Int16], 1)) else {
val match_score = mux(seqa_sram_raw(c-1) == seqb_sram_raw(r-1), MATCH_SCORE.

→˓to[Int16], MISMATCH_SCORE.to[Int16])
val from_top = score_matrix(r-1, c).score + GAP_SCORE
val from_left = previous_result.score + GAP_SCORE
val from_diag = score_matrix(r-1, c-1).score + match_score
mux(from_left >= from_top && from_left >= from_diag, nw_tuple(from_left, SKIPB),

→˓mux(from_top >= from_diag, nw_tuple(from_top,SKIPA), nw_tuple(from_diag, ALIGN)))
}
previous_result := update
if (c >= 0) {score_matrix(r,c) = update}

}
}

val traverseState = 0
val padBothState = 1
val doneState = 2

val seqa_fifo_aligned = FIFO[Int8](max_length*2)
val seqb_fifo_aligned = FIFO[Int8](max_length*2)
val b_addr = Reg[Int](0)
val a_addr = Reg[Int](0)
b_addr := LEN
a_addr := LEN
val done_backtrack = Reg[Bit](false)
FSM[Int](state => state != 2) { state =>

if (state == traverseState) {
if (score_matrix(b_addr,a_addr).ptr == ALIGN.to[Int16]) {
seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)
done_backtrack := b_addr == 1.to[Int] || a_addr == 1.to[Int]
b_addr :-= 1
a_addr :-= 1

} else if (score_matrix(b_addr,a_addr).ptr == SKIPA.to[Int16]) {
seqb_fifo_aligned.enq(seqb_sram_raw(b_addr-1), !done_backtrack)

(continues on next page)
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seqa_fifo_aligned.enq(dash, !done_backtrack)
done_backtrack := b_addr == 1.to[Int]
b_addr :-= 1

} else {
seqa_fifo_aligned.enq(seqa_sram_raw(a_addr-1), !done_backtrack)
seqb_fifo_aligned.enq(dash, !done_backtrack)
done_backtrack := a_addr == 1.to[Int]
a_addr :-= 1

}
} else if (state == padBothState) {

seqa_fifo_aligned.enq(underscore, !seqa_fifo_aligned.full)
seqb_fifo_aligned.enq(underscore, !seqb_fifo_aligned.full)

} else {}
} { state =>

mux(state == traverseState && ((b_addr == 0.to[Int]) || (a_addr == 0.to[Int])),
→˓padBothState,

mux(seqa_fifo_aligned.full || seqb_fifo_aligned.full, doneState, state))
}

seqA_aligned(0::LEN2x) store seqa_fifo_aligned
seqB_aligned(0::LEN2x) store seqb_fifo_aligned

}

val seqA_aligned_result = getMem(seqA_aligned)
val seqB_aligned_result = getMem(seqB_aligned)

val errors = seqA_aligned_result.zip(seqB_aligned_result){(a,b) => if (a != b && a != d && b
→˓!= d) 1 else 0}.reduce{_+_}

println("Found " + errors + " errors out of " + {seq_length*2} + " characters")
val cksum = errors.to[Float] / (seq_length*2).to[Float] < 0.1.to[Float]
println("Acceptable? " + cksum)

val seqA_aligned_string = argon.lang.String.num2string(seqA_aligned_result)
val seqB_aligned_string = argon.lang.String.num2string(seqB_aligned_result)
println("Aligned A: " + seqA_aligned_string)
println("Aligned B: " + seqB_aligned_string)

}
}

1.2.7 5. Design Space Exploration with Spatial

Coming Soon!

- David

1.3 Examples

This section gives some simple annotated applications for learning Spatial by example.

Please visit the latest regression branch of the spatial-apps repository: https://github.com/stanford-ppl/spatial-apps/
tree/regression/src

1.4 Targets

This section provides details on the hardware Spatial can target.
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1.4.1 AWS

This section describes how Spatial applications can be run on Amazon’s EC2 FPGA instances. For an introduction to
Spatial, see the tutorial in the previous section.

0. Introduction

Prerequisites

Running on EC2 FPGAs requires the following prerequisites:

• An installation of Spatial as described in the previous tutorial

• Vivado and a license to run on the desired Amazon FPGA. We tested this tutorial both on Amazon’s FPGA
Developer AMI which contains all the required software tools, as well as locally by following these instructions.

Setup

Clone Amazon’s EC2 FPGA Hardware and Software Development Kit to any location:

$ git clone https://github.com/aws/aws-fpga.git

Spatial was most recently tested with version 1.3.3 of this repository (git commit
934000f9a57c0cde8786441864d5c6e0cf42fef9).

Set the AWS_HOME environment variable to point to the cloned directory. Also source the AWS setup scripts. The
HDK script is needed for simulation and synthesis, and the SDK is needed to create the host binary:

$ export AWS_HOME=/path/to/aws-fpga
$ cd /path/to/aws-fpga/
$ source /path/to/aws-fpga/hdk_setup.sh
$ source /path/to/aws-fpga/sdk_setup.sh

For example, you can add the 4 commands above to your .bashrc and source that.

Finally, applications targeting the F1 board (in hardware or simulation) need to set the target variable. For example,
make the following change in the very top of the apps/src/MatMult_outer.scala application:

object MatMult_outer extends SpatialApp {
override val target = spatial.targets.AWS_F1 // <---- new line
...

The next tutorial sections describe how to generate and run applications for simulation and for the FPGAs on the F1
instances.

1. Simulation

Why Run Simulation

We intend for Spatial applications to work in hardware without requiring simulation. But for the alpha release of
Spatial, the user may prefer to first simulate the design before paying to open an F1 FPGA instance. This tutorial
describes how to simulate your Spatial application using the simulation environment provided by Amazon in their
Development Kit.
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These steps can be done on any machine with the Vivado XSIM simulator. We did this both on a local machine as well
as on an EC2 machine with the Amazon FPGA Developer AMI. An FPGA instance is not needed for this simulation
tutorial.

To skip simulation and run directly in hardware, see the F1 tutorial.

Generating the Application for Simulation

The first step is the same as compiling a Spatial application for any other target, shown here for the
SimpleTileLoadStore example:

$ cd ${SPATIAL_HOME}
$ bin/spatial SimpleTileLoadStore --synth

You can replace SimpleTileLoadStore with any application, as described in the previous tutorial. Note however
that the XSIM simulation seems to have a default timeout and that applications which run for too many cycles will not
finish. When possible we recommend selecting input arguments which allow your design to complete more quickly in
simulation.

Now generate the simulation binary Top:

$ cd ${SPATIAL_HOME}/gen/SimpleTileLoadStore
$ make aws-sim
$ ./Top 100

Notice that the final two steps above both need the Vivado XSim simulator. Other simulators can be used with the
Amazon Development Kit but this has not been tested with Spatial.

The simulation typically takes ten minutes or longer to complete.

If the simulation is successful, the following output will be seen:

PASS: 1

If your application completed successfully, next you can run it in hardware.

2. F1 Instances

Summary of Steps

Unlike simulation, running on the F1 requires a few simple manual steps. These depend on your personal AWS
account (EC2 and S3). Specifically, following synthesis Amazon requires the bitstream to be uploaded to your S3
account, and an EC2 account is needed to launch an F1 instance to run the spatial application in hardware.

This tutorial describes the following steps:

• Authenticating your AWS account

• Generating and synthesizing a Spatial design. In our experience, synthesis/place/route takes 4-12 hours depend-
ing on design size

• Uploading the bitstream (AKA design checkpoint, or DCP) to Amazon S3 and waiting approximately 1 hour
for the Amazon FPGA Image (AFI) associated with this bitstream to become valid

• Opening an F1 instance through your EC2 account

• Running the spatial application
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Step 1: Authenticating your AWS account

Follow these steps to create a file rootkey.csv. This file can be placed anywhere, and will be needed for later steps
to run commands associated with your AWS account.

Then add the path to that file to your .bashrc as follows:

export AWS_CONFIG_FILE=/path/to/rootkey.csv

Step 2: Generate and Synthesize your application

The first step is the same as compiling a Spatial application for any other target, shown here for the MatMult_outer
example:

cd ${SPATIAL_HOME}
bin/spatial MatMult_outer --synth

You can replace MatMult_outer with any application, as described in the previous tutorial.

Now generate the F1 design and run synthesis/place/route to begin creating the Amazon FPGA Image (AFI):

cd ${SPATIAL_HOME}/gen/MatMult_outer
make aws-F1-afi

We tested this both using Amazon’s FPGA Developer AMI and also locally using their instructions.

Notice that once this command completes, Vivado synthesis will be running in the background. A text file called
create_spatial_AFI_instructions.txt has also been created. Follow the instructions in this text file
(also described below) once Vivado completes to upload the Design Checkpoint (DCP) and finish creating the AFI.

Vivado will have completed once the *.vivado.log file in aws-fpga/hdk/cl/examples/
MatMult_outer/build/scripts has printed Finished creating final tar file in to_aws
directory.. You can also check if the vivado process has stopped.

Step 3: Creating the AFI

See the generated file create_spatial_AFI_instructions.txt, which guides the user step-by-step on how
to upload the DCP to S3 and then run the create-fpga-image command.

Running these commands will require the AWS Command Line Interface. We tested with version 1.11.78.

Once create-fpga-image has been run, wait for the logs directory in S3 to be filled, and ensure that the AFI
state in the file called State is “available”.

Step 4: Opening an F1 instance

Start an F1 instance in the AWS console. We tested with Amazon’s FPGA Developer AMI although this might not be
necessary.

If you already have an existing F1 instance (e.g. for a previous Spatial application), skip to Step 5. If this is your first
time starting the F1 instance, follow the one-time setup steps below.

Clone Amazon’s EC2 FPGA Hardware and Software Development Kit to any location, e.g. /home/centos/src/
project_data:
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git clone https://github.com/aws/aws-fpga.git

Put the following (replacing with your chosen path above) in your .bashrc:

cd /home/centos/src/project_data/aws-fpga/
source /home/centos/src/project_data/aws-fpga/sdk_setup.sh

Source the .bashrc:

source ~/.bashrc

Then follow these instructions to build and install the required EDMA driver. Summary:

cd sdk/linux_kernel_drivers/edma/
make
echo 'edma' | sudo tee --append /etc/modules-load.d/edma.conf
sudo cp edma-drv.ko /lib/modules/`uname -r`/
sudo depmod
sudo modprobe edma-drv

Step 5: Running the Spatial application

Generate the host (software) binary using:

make aws-F1-sw

You can do this on your local machine and copy over the binary to the F1 (this might require changing permissions
to run it), or compile the binary on the F1 instance. To do it on the F1 instance, you only need the software/
runtime and software/include directories of the generated Spatial AWS application (e.g. aws-fpga/hdk/
cl/examples/MatMult_outer), and can compile using make all in software/runtime.

Also modify the file load.sh in software/runtime to paste in the agfi ID returned above. Eventually this will
be automated.

Run the application using the commands below in the runtime directory. Eventually the call to load.sh will be
automated within Top:

bash load.sh
sudo ./Top arg1 arg2 ...

Notes on the above commands:

• Currently we require a board reset (part of load.sh) prior to running an application. Eventually this will not
be needed.

• Eventually the agfi above will be automatically written to a file which the Spatial application reads. For now
it is part of load.sh.

1.4.2 Scala

Prerequisites

Running the Scala backend requires. . . Scala to be installed on your machine.

• Scala SBT

You must have Scala installed to compile Spatial applications, so if you can compile the app successfully then you
already have what you need to run the Scala backend.

1.4. Targets 111

https://github.com/aws/aws-fpga/blob/master/sdk/linux_kernel_drivers/edma/edma_install.md#howToCompile
http://www.scala-sbt.org


Spatial Documentation, Release 0.1

Notes

The Scala backend is a useful tool for debugging at the algorithm level. It has a few advantages and disadvantages,
however:

• Advantages

– println statements in the Accel will actually print while the app simulates

– Fastest way to go from source code to execution

• Disadvantages

– Not cycle accurate. The Scala backend will not expose bugs related to things like loop-carry dependencies
in coarse-grain pipelines or unprotected parallelized writes to memories.

– Cannot target any devices from generated code.

– Execution can be slow

Spatial Compile

Then, compile the Spatial app with the following steps:

$ cd spatial-lang/ # Navigate to Spatial base directory
$ bin/spatial <app name> --sim <other options>

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

Backend Compile

For the Scala backend, compiling the generated code is optional since the execution script will call SBT, which will
compile the code anyway. If you want to just compile the Scala, run the following:

$ cd gen/<app name> # Navigate to generated directory
$ make sim # If you chose the Scala backend

Execute

To execute the generated code, run:

$ # Run simulation executable if one of the first two options were chosen
$ bash run.sh "<arguments>"

NOTE: The “<arguments>” should be a space-separated list, fully enclosed in quotes. For example, an app that takes
arguments 192 96 should be run with:

$ bash run.sh "192 96"

1.4.3 VCS

Prerequisites

Running the VCS backend requires a Synopsys VCS license and environment variables properly pointing to the VCS
license and VCS binary.
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• VCS ** NOTE: License is required **

Notes

The VCS simulator is a powerful, cycle-accurate verilog simulator. It is a good representative of what to expect when
you deploy your algorithm to an FPGA. This backend is integrated with DRAMSim to somewhat simulate what would
happen with the real DRAM peripherals.

Spatial Compile

Then, compile the Spatial app with the following steps:

$ cd spatial-lang/ # Navigate to Spatial base directory
$ bin/spatial <app name> --synth <other options>

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

If you are using the

Backend Compile

In the generated directory, you will notice the following structure. By default, this directory is spatial-lang/
gen/<app name>. Here is a rough breakdown of what the important files are:

chisel/RootController.scala Main trait where all of the controller and dataflow connections are made
chisel/x###.scala Nested traits where more controller and dataflow connections are made
chisel/IOModule.scala Interface between FPGA accelerator and CPU
chisel/BufferControlCxns Connections for all N-buffered memories in the design
chisel/templates/*.scala Files for all of the fundamental building blocks of a Spatial app, including Fringe
cpp/TopHost.scala Contains the Application method where all CPU code is generated
controller_tree.html Helpful diagram for showing the hierarchy of control nodes in your app

To compile the VCS target and prepare for simulation, run the following:

$ cd gen/<app name> # Navigate to generated directory
$ make vcs # Alternatively, you can run make vcs-hw && make vcs-sw

This will first convert the Chisel to verilog, then compile that verilog for the simulation. Finally, it enters the cpp/
directory and compiles the host code and puts a Top executable in the generated app directory that binds the verilog
to the host when executed.

If you want to turn on waveforms, you can either turn on .vcd dumping or .vpd dumping. To do this, edit chisel/
template-level/fringeVCS/Top-harness.sv at the appropriate lines:

reg vpdon = 0;
reg vcdon = 0;

If you turn on either of these flags, the waveform dump will appear in the generated directory after you execute, as
described in the following section.

Execute

To execute the generated code, run:
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$ # Run simulation executable if one of the first two options were chosen
$ bash run.sh "<arguments>"

NOTE: The “<arguments>” should be a space-separated list. For example, an app that takes arguments 192 96 should
be run with:

$ bash run.sh 192 96

If you’ve forgotten what input arguments are required for a given app, you can run:

$ bash run.sh -h

The simulator will print out a status note after every 10000 cycles. By default, the VCS simulation will time out after
10000000000 cycles. If your app appears to hang in simulation, you can either put breakpoints in your Spatial app
directly, or edit the following line in cpp/fringeVCS/FringeContextVCS.h and recompile the software:

uint64_t maxCycles = 10000000000;

1.4.4 Zynq 7000 Series

Prerequisites

You will need a Zynq 7000 board, such as the ZC706, and a valid license for Vivado for this target. You will also need
the appropriate cross-compiler.

• ZC706

• arm-linux-gnueabihf- toolchain

The generated executable for this target assumes you have a Linux OS installed on the board and have an executable
in you path called prog_fpga. To create this executable, download this file and do the following on the Zynq:

$ mv prog_fpga /usr/bin
$ chmod +x /usr/bin/prog_fpga

Notes

Specifications of the ZC706 can be found here.

Spatial Compile

When writing your app, you should make the following modifications to bring in board-specific knowledge into the
spatial compiler, such as DSE models:

import spatial.targets._

...

object <app name> extends SpatialApp {
override val target = Zynq

...

}

Then, compile the Spatial app with the following steps:
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$ cd spatial-lang/ # Navigate to Spatial base directory
$ bin/spatial <app name> --synth # + other options

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

Backend Compile

In the generated directory, you will notice the following structure. By default, this directory is spatial-lang/
gen/<app name>. Here is a rough breakdown of what the important files are:

chisel/template-level/fringeZynq/ Contains tcl scripts for stitching together all of the IPs
cpp/fringeZynq/ Contains board specific C++ code
verilog-zynq/ Will appear after synthesis, contains log files and verilog

To compile the VCS target and prepare for simulation, run the following:

$ cd gen/<app name> # Navigate to generated directory
$ make zynq # Alternatively, you can run make zynq-hw && make zynq-sw

This will first convert the Chisel to verilog, then use vivado to synthesize that verilog and stitch it to the other IPs.
Finally, it enters the cpp/ directory and compiles the host code drops a <app name>.tar.gz in the generated app
directory that binds the verilog to the host when executed.

Execute

To execute the generated code, scp the generated .tar.gz file to the Zynq, export APPNAME as appropriate, and
run:

$ mkdir $APPNAME
$ tar -xvf $APPNAME.tar.gz -C $APPNAME
$ cd $APPNAME
$ mkdir verilog && mv accel.bit.bin verilog
$ sudo ./Top <arguments>

It is very important to use the directory structure above or else it may cause the board to hang. The “<arguments>”
should be a space-separated list. For example, an app that takes arguments 192 96 should be run with:

$ sudo ./Top 192 96

If you’ve forgotten what input arguments are required for a given app, you can run:

$ sudo ./Top -h

Sudo is required because the executable will attempt to program the fpga, which requires root permissions

1.4.5 Zynq Ultrascale MPSoC

Prerequisites

You will need a Zynq Ultrascale MPSoC board, such as the ZCU102 Rev 1, and a valid license for Vivado for this
target. You will also need the appropriate cross-compiler.

• ZCU102
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• aarch64-linux-gnu- toolchain

The generated executable for this target assumes you have a Linux OS installed on the board and have an executable
in you path called prog_fpga. To create this executable, download this file and do the following on the Zynq:

$ mv prog_fpga /usr/bin
$ chmod +x /usr/bin/prog_fpga

Notes

Specifications of the ZCU102 can be found here.

Spatial Compile

When writing your app, you should make the following modifications to bring in board-specific knowledge into the
spatial compiler, such as DSE models:

import spatial.targets._

...

object <app name> extends SpatialApp {
override val target = ZCU102

...

}

Then, compile the Spatial app with the following steps:

$ cd spatial-lang/ # Navigate to Spatial base directory
$ bin/spatial <app name> --synth <other options>

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

Backend Compile

In the generated directory, you will notice the following structure. By default, this directory is spatial-lang/
gen/<app name>. Here is a rough breakdown of what the important files are:

chisel/template-level/fringeZynq/ Contains tcl scripts for stitching together all of the IPs
cpp/fringeZCU/ Contains board specific C++ code
verilog-zcu/ Will appear after synthesis, contains log files and verilog

To compile the VCS target and prepare for simulation, run the following:

$ cd gen/<app name> # Navigate to generated directory
$ make zcu # Alternatively, you can run make zcu-hw && make zcu-sw

This will first convert the Chisel to verilog, then use vivado to synthesize that verilog and stitch it to the other IPs.
Finally, it enters the cpp/ directory and compiles the host code drops a <app name>.tar.gz in the generated app
directory that binds the verilog to the host when executed.
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Execute

To execute the generated code, scp the generated .tar.gz file to the ZCU, export APPNAME as appropriate, and
run:

$ mkdir $APPNAME
$ tar -xvf $APPNAME.tar.gz -C $APPNAME
$ cd $APPNAME
$ mkdir verilog && mv accel.bit.bin verilog
$ sudo ./Top <arguments>

It is very important to use the directory structure above or else it may cause the board to hang. The “<arguments>”
should be a space-separated list. For example, an app that takes arguments 192 96 should be run with:

$ sudo ./Top 192 96

If you’ve forgotten what input arguments are required for a given app, you can run:

$ sudo ./Top -h

Sudo is required if you are not logged in as root because the executable will attempt to program the fpga, which
requires root permissions

1.4.6 Plasticine

Prerequisites

More TBD. . .

Notes

Plasticine is a Coarse Grain Reconfigurable Architecture (CGRA) developed as part of the DAWN collaboration at
Stanford.

More TBD. . .

Spatial Compile

When writing your app, you should make the following modifications to bring in board-specific knowledge into the
spatial compiler, such as DSE models.

Then, compile the Spatial app with the following steps:

$ cd spatial-lang/ # Navigate to Spatial base directory
$ sbt "runMain <app name> --pir <other options>"

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

Backend Compile

TBD. . .
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Execute

TBD. . .

1.4.7 ASIC

Prerequisites

More TBD. . .

Notes

TBD. . .

Spatial Compile

Then, compile the Spatial app with the following steps:

$ cd spatial-quickstart/ # Navigate to Spatial base directory
$ bin/spatial <app name> --synth <other options>

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

Backend Compile

To synthesize for the ASIC, run the following:

$ cd gen/<app name> # Navigate to generated directory
$ make asic

More TBD. . .

Execute

TBD. . .

1.4.8 Arria10 SoC

Prerequisites

You will need an Arria10 board, and a valid license for the Quartus toolchain for this target.

• Arria10

More TBD. . .

Notes

Specifications of the Arria10 can be found here.
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Spatial Compile

When writing your app, you should make the following modifications to bring in board-specific knowledge into the
spatial compiler, such as DSE models:

import spatial.targets._

...

object <app name> extends SpatialApp {
override val target = Arria10

...

}

Then, compile the Spatial app with the following steps:

$ cd spatial-quickstart/ # Navigate to Spatial base directory
$ bin/spatial <app name> --synth <other options>

The <app name> refers to the name of the object that extends SpatialApp. For the other options, see here

Backend Compile

In the generated directory, you will notice the following structure. By default, this directory is spatial-lang/
gen/<app name>. Here is a rough breakdown of what the important files are:

chisel/template-level/fringeArria10/ Contains scripts for stitching together all of the IPs
cpp/fringeArria10/ Contains board specific C++ code
verilog-arria10/ Will appear after synthesis, contains log files and verilog

To compile the VCS target and prepare for simulation, run the following:

$ cd gen/<app name> # Navigate to generated directory
$ make arria10 # Alternatively, you can run make arria10-hw && make arria10-sw

This will first convert the Chisel to verilog, then synthesize that verilog and stitch it to the other IPs. Finally, it enters
the cpp/ directory and compiles the host code drops a <app name>.tar.gz in the generated app directory that
binds the verilog to the host when executed.

Execute

To execute the generated code, scp the generated .tar.gz file to the Arria10, export APPNAME as appropriate, and
run:

$ mkdir $APPNAME
$ tar -xvf $APPNAME.tar.gz -C $APPNAME
$ cd $APPNAME
$ # EXTRA STEPS TBD...
$ sudo ./Top <arguments>

It is very important to use the directory structure above or else it may cause the board to hang. The “<arguments>”
should be a space-separated list. For example, an app that takes arguments 192 96 should be run with:

$ sudo ./Top 192 96
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If you’ve forgotten what input arguments are required for a given app, you can run:

$ sudo ./Top -h

Sudo is required if you are not logged in as root because the executable will attempt to program the fpga, which
requires root permissions

1.5 Theory

This section provides a developer’s introduction to the Spatial compiler to help you develop or modify the language.
General users of the language can just look at the tutorial

1.5.1 Introduction

A Spatial program describes a dataflow graph consisting of various kinds of nodes connected to each other by data
dependencies. Each node in a Spatial program corresponds to a architectural template. Spatial is represented in-
memory as a parameterized, hierarchical dataflow graph.

Templates in Spatial capture parallelism, locality, and access pattern information at multiple levels. This dramatically
simplifies coarse-grained pipelining and enables us to explicitly capture and represent a large space of designs which
other tools cannot capture. Every template is parameterized. A specific hardware design point is instantiated from
a Spatial description by instantiating all the templates in the design with concrete parameter values passed to the
program. Spatial heavily uses metaprogramming, so these values are passed in as arguments to the Spatial program.
The generated design instance is represented internally as a graph that can be analyzed to provide estimates of metrics
such as area and cycle count. The parameters used to create the design instance can be automatically generated by a
design space exploration tool.

(More to come)

1.6 FAQ

1.6.1 Simulation

Why does my Scala result not match my RTL simulation result?

This is generally due to loop-carry dependency, pipelining, or parallelization issues. The best way to rule
out these is to turn off all pipelining and parallelizations and check if the result is correct. If you have
tried this and the results still do not match, it is possible you have exposed a compiler bug and should post
to the Spatial users google group.

Why does my Scala result have a bunch of numbers with X’s in them?

This means that this particular value was computed using uninitialized numbers at some point in its history.

1.6.2 Language

Why does Spatial use type classes rather than inheritance for things like Bits and Num?

While inheritance and type classes have many of the same properties, type classes are somewhat more
flexible in that they allow simple conditional rules. Spatial views the idea that a type can be represented
by a fixed set of Bits as a conditional property, rather than a superclass. Spatial uses type classes because
this conditional attribution is not possible with normal inheritance.
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For example, with the Tuple2[A,B] type, Spatial can conditionally determine if an instance of this type is
representable by a fixed set of Bits based on the types A and B. If A and B both have the Bits property,
then that particular instance will as well.

The downside of this is that type classes are based on type information only, not on the instance. This
means, for example, that the VectorN type does not implicitly have evidence of being representable by
Bits, even though every instance of that class will include a fixed width.

Why does Spatial include the VectorN type?

Unlike C++, Scala does not support template classes which are parameterized by integer values. This
means that, for methods where the number of elements in the resulting Vector depends on an argument to
that method, the resulting type of the method cannot be written statically in Scala. However, this width is
still statically analyzable. As a workaround, Spatial uses the VectorN type to denote a Vector which needs
static analysis of its width.

If you could not find the answer to your question here, head over to the google group.

More to be added. . .

1.7 Contact

Spatial is currently being developed in Professor Olukotun’s group as part of the Stanford DAWN project.

Questions and issues can be directed either to the Spatial users google group or directly as an issue on the Spatial
github .
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